Skip to main content

Uncertainty Quantification Applied to Gas Turbine Components

  • Chapter
  • First Online:
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines

Abstract

The previous chapters analyzed the level of uncertainty in different gas turbine components, how this affects the performance such as life and fuel consumption, and the numerical uncertainty introduced by the CFD modeling itself. This chapter shows how uncertainty quantification techniques are used nowadays in CFD to study the impact of such manufacturing errors, pointing out, for each component, what has been learned and/or discovered using UQ, and which methodology has been used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodhand, M. N., Miller, R. J., & Lung, H. W. (2012). The sensitivity of 2D compressor incidence range to in-service geometric variation. Proceedings of the ASME Turbo Expo, 8, 159–170.

    Google Scholar 

  2. Lange, A., Voigt, M., & Vogeler, K. (2012). Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012.

    Google Scholar 

  3. Seshadri, P., Parks, G., & Jarrett, J. (2013). Towards robust design of axial compressors with uncertainty quantification. Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.

    Google Scholar 

  4. Seshadri, P., Shahpar, S., & Parks, G. T. (2014). Robust compressor blades for desensitizing operational tip clearance variations. Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition GT2014, June 16–20.

    Google Scholar 

  5. Giebmanns, A., Backhaus, J., & Frey, C. (2013) Compressor leading edge sensitivities and analysis with an adjoint flow solver. Proceedings of the ASME Turbo Expo, 6 A.

    Google Scholar 

  6. Goodhand, M. N., & Miller, R. J. (2011) The impact of real geometries on three-dimensional separations in compressors. Journal of Turbomachinery, 134(2).

    Google Scholar 

  7. Lange, A., Voigt, M., & Vogeler, K. (2010). Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account. Proceedings of the ASME Turbo Expo, 6, 617–628.

    Google Scholar 

  8. Lange, A., Voigt, M., & Vogeler, K. (2012) Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance. Journal of Engineering for Gas Turbines and Power, 134(3).

    Article  Google Scholar 

  9. Lange, A., Voigt, M., & Vogeler, K. (2012). Impact of manufacturing variability on multistage high-pressure compressor performance. Journal of Engineering for Gas Turbines and Power, 134(11).

    Article  Google Scholar 

  10. Lange, A., Vogeler, K., & Gümmer, V. (2009). Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation. Proceedings of the ASME Turbo Expo, 6, 1113–1123.

    Google Scholar 

  11. Ghisu, T., Parks, G. T., & Jarrett, J. P. (2010). Adaptive polynomial chaos for gas turbine compression systems performance analysis. AIAA Journal, 48(6), 1156–1170.

    Article  Google Scholar 

  12. Freeman, C. (1985). Tip clearance effects in axial turbomachines. Von Karman Institute Lecture Series 1985–05.

    Google Scholar 

  13. Montomoli, F., D’Ammaro, A., & Uchida, S. (2013). Uncertainty quantification and conjugate heat transfer: A stochastic analysis. Journal of Turbomachinery, 135(3).

    Article  Google Scholar 

  14. Qin, R., Ju, Y., Wang, Y., & Zhang, C. Flow analysis and uncertainty quantification of a 2d compressor cascade with dirty blades, GT2016-56915.

    Google Scholar 

  15. Ngo, K. V., & Turnerm, I. Y. (2004) Impact of variations on I-D flow in gas turbine engines via Monte-Carlo simulations. In: 2004 IEEE Aerospace Conference Proceedings.

    Google Scholar 

  16. Sheen, D. A., You, X., Wang, H., & Lovas, T. (2009). Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion. Proceedings of the Combustion Institute, 32(1), 535–542.

    Article  Google Scholar 

  17. Montomoli, F., Insinna, M., Cappelletti, A., & Salvadori, S. (2015). Uncertainty quantification and stochastic variations of renewable fuels. ASME IGTI 2015.

    Google Scholar 

  18. Najm, R., & Knio. (2003). Uncertainty quantification in reacting flow modelling. (SANDIA Report-SAND2003-8598).

    Google Scholar 

  19. Najm, D., & Marzouk, (2009). Uncertainty quantification in chemical systems. International Journal for Numerical Methods Engineering, 80, 789–814.

    Article  MathSciNet  Google Scholar 

  20. Silva, C. F., Magri, L., Runte, T., & Polifke, W. Uncertainty quantification of growth rates of thermoacoustic instability by an adjoint Helmholtz Solver, GT2016-57659.

    Google Scholar 

  21. Bunker, R. S. (2009). The effects of manufacturing tolerances on gas turbine cooling. Journal of Turbomachinery, 131(4), 1–11.

    Article  Google Scholar 

  22. Montomoli, F., & Massini, M. (2013). Gas turbines and uncertainty quantification: Impact of PDF tails on UQ predictions, the Black Swan. Proceedings of the ASME Turbo Expo, 3 C.

    Google Scholar 

  23. Montomoli, F., Massini, M., Maceli, N., Cirri, M., Lombardi, L., Ciani, A., et al. (2010). Interaction of wheelspace coolant and main flow in a new aeroderivative low pressure turbine. Journal of Turbomachinery, 132.

    Google Scholar 

  24. Montomoli, F., & Massini, M. (2013) Gas turbines and uncertainty quantification: Impact of PDF tails on UQ predictions. The Black Swan, ASME IGTI.

    Google Scholar 

  25. Montomoli, F., Amirante, D., Hills, N., Shahpar, S., Massini, M. (2014) Uncertainty quantification, rare events, and mission optimization: Stochastic variations of metal temperature during a transient. Journal of Engineering for Gas Turbines and Power, 137.

    Article  Google Scholar 

  26. Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty and film cooling: Fillet radii. Journal of Turbomachinery, 134(1).

    Article  Google Scholar 

  27. Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty in turbomachinery: tip gap and fillet radius. Computers & Fluids, 46(1), 362–368.

    Article  Google Scholar 

  28. Moeckel, C. W., Darmofal, D. L., & Kingston, T. R. (2007). Toleranced designs of cooled turbine blades through probabilistic thermal analysis of manufacturing variability. Proceedings of the ASME Turbo Expo, 5, 1179–1191.

    Google Scholar 

  29. Smith, W. R. (2002). Models for solidification and splashing in laser percussion drilling. SIAM Journal on Applied Mathematics, 62(6), 1899–1923.

    Article  MathSciNet  Google Scholar 

  30. Montomoli, F., D’Ammaro, A., & Uchida, S. (2012). Uncertainty quantification and conjugate heat transfer: A stochastic analysis. Proceedings of the ASME Turbo Expo, 4, 99–108.

    Google Scholar 

  31. Zhu, P., Yan, Y., Song, L., Li, J., & Feng, Z. Uncertainty quantification of heat transfer for a highly loaded gas turbine blade endwall using polynomial chaos, GT2016-56575.

    Google Scholar 

  32. Witteveen, J. A. S., & Bijl, H. (2006, January). Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. In 44th AIAA Aerospace Sciences Meeting and Exhibit. Aerospace Sciences Meetings (pp. 1–17). American Institute of Aeronautics and Astronautics.

    Google Scholar 

  33. Oladyshkin, S., & Nowak, W. (2012, October). Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion. Reliability Engineering and System Safety, 106, 179–190.

    Article  Google Scholar 

  34. Oladyshkin, S., Class, H., Helmig, R., & Nowak, W. (2011, November). A concept for data driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Advances in Water Resources, 34(11), 1508–1518.

    Article  Google Scholar 

  35. Oladyshkin, S., Schröder, P., Class, H., & Nowak, W. (2013). Chaos expansion based Bootstrap filter to calibrate CO2 injection models. Energy Procedia, 40, 398–407.

    Article  Google Scholar 

  36. Ashraf, M., Oladyshkin, S., & Nowak, W. (2013, November). Geological storage of CO2: Application, feasibility and efficiency of global sensitivity analysis and risk sssessment using the arbitrary polynomial chaos. International Journal of Greenhouse Gas Control, 19, 704–719.

    Article  Google Scholar 

  37. Oladyshkin, S., Class, H., Helmig, R., & Nowak, W. (2011). An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Computational Geosciences, 15(3), 565–577.

    Article  Google Scholar 

  38. Ahlfeld. R., & Montomoli, F. (2017). A single formulation for uncertainty propagation in turbomachinery: SAMBA PC. Journal of Turbomachinery.

    Google Scholar 

  39. Gorodetsky, A., & Marzouk, Y. (2014). Efficient localization of discontinuities in complex computational simulations. SIAM Journal on Scientific Computing, 36(6), A2584–A2610.

    Article  MathSciNet  Google Scholar 

  40. Ahlfeld, R., Carnevale, M., Montomoli, F., & Simone, S. An autonomous uncertainty quantification method for the digital age: Transonic flow simulations using multivariate pade approximations, GT2017-64968.

    Google Scholar 

  41. Griffini, D. (2016). Development of predictive models for synchronous thermal instability (Ph.D. thesis). University of Florence.

    Google Scholar 

  42. Gritsch, M., Schulz, A., & Wittig, S. (1998). Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits. Journal of Turbomachinery, 120(3), 549–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Montomoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montomoli, F., Massini, M. (2019). Uncertainty Quantification Applied to Gas Turbine Components. In: Montomoli, F. (eds) Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines. Springer, Cham. https://doi.org/10.1007/978-3-319-92943-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92943-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92942-2

  • Online ISBN: 978-3-319-92943-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics