Skip to main content

Biodiversity Sector: Risks of Temperature Increase to Biodiversity and Ecosystems

  • Chapter
  • First Online:
Climate Change Risks in Brazil

Abstract

Climate change poses risks to biodiversity and to the socioecological systems dependent on it in Brazil. However, the country’s natural wealth, its biodiversity and ecosystems, are simultaneously among the main source of alternatives for mitigation and adaptation. This review shows that increase in temperature of >2oC, towards the end of this century, will have severe impacts upon biodiversity in Brazil. Impacts include high rates of species extinction, geographic dislocation of species (particularly towards the south), savannization of forests and impoverishment of savanna and other open vegetation, significant reductions in the number of days of growth per year for tropical forest species, and impacts on agriculture due to decline in populations of important pollinators. Most Brazilian biomes are particularly sensitive to climate change and ecosystem such as those at high-altitude, coastal and marine, and urban areas are largely vulnerable. Ecosystem-based adaptation to climate change emerges as a key option for Brazil to reduce societal vulnerability. Science and policy related to biodiversity conservation and ecological restoration will need to incorporate climate change background on prioritisation efforts and implementation. The main conclusion of this review is that bringing biodiversity and ecosystems to the centre of the development process of Brazil, rather than treating them as an obstacle to development, will be a strategic step both to fight climate change and to promote a sustainable and inclusive development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SNUC = National Conservation Units System; Planaveg = National Native Vegetation Restoration Plan; New Forest Code = Native Vegetation Protection Law.

References

  • Aguiar, L. M. S., Bernard, E., Ribeiro, V., Machado, R. B., & Jones, G. (2016). Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5, 22–33.

    Article  Google Scholar 

  • Anadón, J. D., Sala, O. E., & Maestre, F. T. (2014). Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. Journal of Ecology, 102, 1363–1373.

    Article  Google Scholar 

  • Baillie, J. E. M., Hilton-Taylor, C., & Stuart, S. N. (Eds.). (2004). 2004 IUCN red list of threatened species. A global species assessment. Gland, Switzerland: IUCN.

    Google Scholar 

  • Balch, J. K., Brando, P. M., Nepstad, D. C., Coe, M. T., Silvério, D., Massad, T. J., et al. (2015). The susceptibility of southeastern Amazon forests to fire: Insights from a large-scale burn experiment. Bioscience, 65(9), 893–905.

    Article  Google Scholar 

  • Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E., & Kirby, R. R. (2015). Future vulnerability of marine biodiversity compared with contemporary and past changes. Nature Climate Change, 5, 695–701.

    Article  Google Scholar 

  • Béllard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., et al. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23, 1376–1386.

    Article  Google Scholar 

  • Cunningham, C., Cunha, A. P., Brito, S., Marengo, J., & Coutinho, M. (2017). Climate change and drought in Brazil. In B. Marchezini, B. Wisner, L. R. Londe, & S. M. Saito (Eds.), Reduction of vulnerability to disaters: From knowledge to action (pp. 361–375). São Carlos, Brazil: Editora RiMa.

    Google Scholar 

  • Descombes, P., Wisz, M. S., Leprieur, F., Parravicini, V., Heine, C., Olsen, S. M., et al. (2015). Forecasted coral reef decline in marine biodiversity hotspots under climate change. Global Change Biology, 21(7), 2479–2487.

    Article  Google Scholar 

  • Diamond, J. M. (1989). Overview of recent extinctions. In D. Western & M. C. Pearl (Eds.), Conservation for the twenty-first century (pp. 37–41). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Faleiro, F. A. V. M., Nemésio, A., & Loyola, R. (2018). Climate change likely to reduce orchid bee abundance even in climatic suitable sites. Global Change Biology. https://doi.org/10.1111/gcb.14112

    Article  Google Scholar 

  • Faleiro, F. V., Machado, R. B., & Loyola, R. D. (2013). Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation, 158, 248–257.

    Article  Google Scholar 

  • Feeley, K. J., & Silman, M. (2016). Disappearing climates may limit the efficacy of Amazonian protected areas in a warming world. Diversity and Distributions, 22, 1081–1084.

    Article  Google Scholar 

  • Ferro, V. G., Lemes, P., Melo, A. S., & Loyola, R. (2014). The reduced effectiveness of protected areas under climate change threatens Atlantic forest tiger moths. PLoS One, 9, e107792.

    Article  Google Scholar 

  • Fisher, J. A., Patenaude, G., Kalpana, G., et al. (2014). Understanding the relationships between ecosystem services and poverty alleviation: A conceptual framework. Ecosystem Services, 7, 34–45.

    Article  Google Scholar 

  • Giannini, T. C., Tambosi, L. R., Acosta, J. R., Saraiva, A. M., Imperatriz-Fonseca, V. L., & Metzger, J. P. (2015). Safeguarding ecosystem services: A methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS One, 10(6), e0129225.

    Article  Google Scholar 

  • Godoy, M. D. P., & Lacerda, L. D. (2015). Mangroves response to climate change: A review of recent findings on mangrove extension and distribution. Anais da Gym Brasileira de Ciências, 87(2), 651–667.

    Article  Google Scholar 

  • Hoffmann, D., Vasconcelos, M. F., & Martins, R. P. (2015). How climate change can affect the distribution range and conservation status of an endemic bird from the highlands of eastern Brazil: The case of the gray-backed Tachuri, Polystictus superciliaris (Aves, Tyrannidae). Biota Neotropica, 15(2), 1–12.

    Article  Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Joly, C., Metzger, J. P., & Tabarelli, M. (2014). Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist, 204, 459–473.

    Article  Google Scholar 

  • Jones, H. P., Hole, D. G., & Zavaleta, E. S. (2012). Harnessing nature to help people adapt to climate change. Nature Climate Change, 2(7), 504–509.

    Article  Google Scholar 

  • Jones, K. R., Watson, J. E. M., Possingham, H. P., & Klein, C. J. (2016). Incorporating climate change into spatial conservation prioritisation: A review. Biological Conservation, 194, 121–130.

    Article  Google Scholar 

  • Juhola, S., Glaas, E., Linnér, B.-O., & Neset, T.-S. (2016). Redefining maladaptation. Environmental Science and Policy, 55, 135–140.

    Article  Google Scholar 

  • Kasecker, T. P., Ramos-Neto, M. B., Silva, J. M. C., & Scarano, F. R. (2017). Ecosystem-based adaptation to climate change: Defining hotspot municipalities for policy design and implementation in Brazil. Mitigation and Adaptation Strategies to Global Change. https://doi.org/10.1007/s11027-017-9768-6

    Article  Google Scholar 

  • Keith, D. A., Mahony, M., Hines, H., Elith, J., Regan, T. J., Baumgartner, J. B., et al. (2015). Detecting extinction risk from climate change by IUCN red list criteria. Conservation, 28(3–130), 810–819.

    Google Scholar 

  • Laurance, W. F. (2015). Emerging threats to tropical forests. Annals of the Missouri Botanical Garden, 100(3), 159–169.

    Article  Google Scholar 

  • Leadley, P., Proença, V., Fernández-Manjarrés, P. H. M., Alkemade, R., Biggs, R., Bruley, E., et al. (2014). Interacting regional-scale regime shifts for biodiversity and ecosystem services. Bioscience 64(8):893–905: 665–679.

    Article  Google Scholar 

  • Lemes, P., & Loyola, R. D. (2013). Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS One, 8, e54323.

    Article  Google Scholar 

  • Loyola, R. D., Lemes, P., Brum, F. T., Provete, D. B., & Duarte, L. D. S. (2014). Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography, 37, 65–72.

    Article  Google Scholar 

  • Lucena, A. J., Rotunno Filho, O. C., Peres, L. F., & France, J. R. A. (2012). A evolução da ilha de calor na region metropolitana do Rio de Janeiro. Revista Geonorte, 2(5) Edição Especial 2:8–21.

    Google Scholar 

  • Mace, G., Masundire, H., & Baillie, J. E. M. (2005). Biodiversity. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems and human well-being: Current state and trends: Findings of the condition and trends working group (pp. 77–122). Washington, DC: Island Press.

    Google Scholar 

  • Magrin, G. O., Marengo, J. A., Boulanger, J.-P., Buckeridge, M. S., Castellanos, E., Poveda, G., et al. (2014). Central and South America. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 1499–1566). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • McNeely, J. A., Mittermeier, R. A., Brooks, T. M., Boltz, F., & Ash, N. (2009). The wealth of nature: Ecosystem services, biodiversity, and human well-being. Arlington, TX: CEMEX, Conservation International.

    Google Scholar 

  • Mittermeier, R. A., Robles-Gil, P., & Mittermeier, C. G. (1997). Megadiversity: Earth’s biologically wealthiest nations. Arlington, TX: CEMEX, Conservation International.

    Google Scholar 

  • Mora, C., Caldwell, I. R., Caldwell, J. M., Fisher, M. R., Genco, B. M., & Running, S. W. (2015). Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLOS Biology. https://doi.org/10.1371/journal.pbio.1002167

    Article  Google Scholar 

  • Oliveira, G., Araújo, M. B., Rangel, T. F., Alagador, D., & Diniz-Filho, J. A. F. (2012). Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodiversity and Conservation, 21(11), 2913–2916.

    Article  Google Scholar 

  • Oliveira, G., Lima-Ribeiro, M. S., Terribile, L. C., Dobrovolski, R., Telles, M. P. C., & Diniz-Filho, J. A. F. (2015). Conservation biogeography of the cerrado’s wild edible plants under climate change: Linking biotic stability with agricultural expansion. Journal of Botany, 102, 6–1.

    Google Scholar 

  • Pant, L. P., Adhikari, B., & Bhattarai, K. K. (2015). Adaptive transition for transformations to sustainability in developing countries. Current Opinion in Environmental Sustainability, 14, 206–212.

    Article  Google Scholar 

  • Pires, A. P. F., Rezende, C. L., Assad, E. D., Loyola, R., & Scarano, F. R. (2017). Forest restoration can increase the Rio Doce watershed resilience. Perspectives in Ecology and Conservation, 15, 187–193.

    Article  Google Scholar 

  • Rezende, C. L., Fraga, J. S., Sessa, J. C., Souza, G. V. P., Assad, E. D., & Scarano, F. R. (2018). Land use policy as a driver for climate change adaptation: A case in the domain of the Brazilian Atlantic forest. Land Use Policy, 72, 563–569.

    Article  Google Scholar 

  • Ribeiro, B. R., Sales, L. P., De Marco, P., & Loyola, R. (2016). Assessing mammal exposure to climate change in the Brazilian Amazon. PLoS One, 11, e0165073.

    Article  Google Scholar 

  • Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Bowman, T., et al. (2015). ARC3.2 Summary for city leaders. Urban climate change research network. New York: Columbia University.

    Google Scholar 

  • Sawyer, D. (2008). Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado. Philosophical Transactions of the Royal Society B, 363, 1747–1752.

    Article  Google Scholar 

  • Scarano, F. R. (2017). Ecosystem-based adaptation to climate change: Concept, scalability and a role for conservation science. Perspectives in Ecology and Conservation, 15, 65–73.

    Article  Google Scholar 

  • Scarano, F. R., & Ceotto, P. (2015). Brazilian Atlantic forest: Impact, vulnerability and adaptation to climate change. Biodiversity and Conservation 24(11), 2913–2916: 2319–2331.

    Article  Google Scholar 

  • Scarano, F. R., Guimarães, A., & Silva, J. M. (2012). Lead by example. Nature, 486, 25–26.

    Article  Google Scholar 

  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature. https://doi.org/10.1038/nature16986

    Article  Google Scholar 

  • Segan, D. B., Murray, K. A., & Watson, J. E. M. (2016). A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Global Ecology and Conservation, 5, 12–21.

    Article  Google Scholar 

  • Silva, J. M. C., & Prasad, S. (2017). Green and socioeconomic infrastructures in the Brazilian Amazon: Implications for a changing climate. Climate and Development. https://doi.org/10.1080/17565529.2017.1411242

  • Souza-Filho, F. A., Scarano, F. R., Nicolodi, J. L., Vital, H., AHF, K., PEPF, T., et al. (2014). Recursos naturais, manejo e uso de ecosystems. In E. D. Assad & A. R. Magalhães (Eds.), Impactos, vulnerabilidades e adaptação às mudanças climáticas. Contribuição do Grupo de Trabalho 2 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas (pp. 43–200). Rio de Janeiro, Brazil: COPPE, Rio de Janeiro Federal University.

    Google Scholar 

  • Steffen, W., Richardson, K., Röckstrom, J., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347, 1259855. https://doi.org/10.1126/science.1259855

    Article  Google Scholar 

  • Strassburg, B. B. N., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., et al. (2017). Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution, 1, 0099. https://doi.org/10.1038/s41559-017-0099

    Article  Google Scholar 

  • Tabarelli, M., Leal, I. R., Scarano, F. R., & Silva, J. M. C. (2017). The future of the Caatinga. In S. JMC, I. R. Leal, & M. Tabarelli (Eds.), Caatinga (pp. 461–474). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    Article  Google Scholar 

  • Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348, 571–573.

    Article  Google Scholar 

  • Vieira, R. R. S., Ribeiro, B. R., Resende, F. M., Brum, F. T., Machado, N., Sales, L. P., et al. (2017). Compliance to Brazil’s forest code will not protect biodiversity and ecosystem services. Diversity and Distributions, 24, 434. https://doi.org/10.1111/ddi.12700

    Article  Google Scholar 

  • Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S. H. M., Joppa, L., et al. (2015). Projecting global biodiversity indicators under future development scenarios. Conservation Letters. https://doi.org/10.1111/conl.12159

    Article  Google Scholar 

  • Yu, M., Wang, G., Parr, D., & Ahmed, K. F. (2014). Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Climatic Change, 127, 257–271.

    Article  Google Scholar 

  • Zanin, M., Tessarolo, G., Machado, N., & Albernaz, A. L. M. (2017). Climatically-mediated landcover change: Impacts on Brazilian territory. Anais da Academia Brasileira de Ciências, 89, 939–952.

    Article  Google Scholar 

  • Zwiener, V. P., Padial, A. A., Marques, M. C. M., Faleiro, F. V., Loyola, R., & Peterson, A. T. (2017). Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Diversity and Distributions, 23, 955–966.

    Article  Google Scholar 

Download references

Acknowledgements

I am very thankful to Prof. José Maria Cardoso da Silva (University of Miami, US) and Prof. Rafael Loyola (UFG, Brazil) for excellent suggestion for improving the manuscript. I am also grateful to the Brazilian Platform on Biodiversity and Ecosystem Services (BPBES) for support (CNPq; project: 405593/2015-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Rubio Scarano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scarano, F.R. (2019). Biodiversity Sector: Risks of Temperature Increase to Biodiversity and Ecosystems. In: Nobre, C., Marengo, J., Soares, W. (eds) Climate Change Risks in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-92881-4_5

Download citation

Publish with us

Policies and ethics