Skip to main content

Macroalgae

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Abstract

Macroalgae in mesophotic coral ecosystems are generally understudied compared to corals and fishes yet may be more abundant than coral-dominated reefs given their lower depth limits (> 200 m) and ability to grow over soft and hard bottom habitats. These assemblages are abundant and diverse globally, with changing species composition with increasing depth. Ubiquitous macroalgal assemblages include the red algal rhodolith beds and nongeniculate and Peyssonneliales assemblages; green algal Halimeda beds, meadows, and bioherms and Caulerpa spp. beds; and brown algal Lobophora spp. or Distromium spp. beds, Sargassum spp., and kelps. The use of molecular techniques is elucidating macroalgal diversity and rates of endemism, and molecular data and phylogenetic analyses often show strong cryptic diversity or pseudodiversity when compared with morphoanatomical analyses. Mesophotic macroalgae are important as habitat and may serve as seedbanks or refugia for ecosystem resilience following environmental stress. Invasive algal blooms may be deleterious, particularly with the removal of native herbivores or increasing nutrients. Geomorphologically, calcified species such as rhodoliths and Halimeda spp. are significant global producers of calcium carbonate. Abiotic factors influencing the abundance and distribution of mesophotic macroalgae include temperature, water clarity, nutrients, and currents. In general, threats include rhodolith mining, oil spills, sedimentation, ocean acidification, invasive species, bottom trawling, and eutrophication. The impacts of global warming at mesophotic depths are unknown. Future studies should focus on collections for molecular analyses to evaluate population-level dynamics and connectivity between shallow and mesophotic depths and in situ manipulations to determine competitive interactions and ecophysiological processes in these low-light environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott IA (1961) A checklist of marine algae from Ifaluk Atoll, Caroline Islands. Atoll Res Bull 77:1–5

    Article  Google Scholar 

  • Abbott IA (1989) Marine algae of the northwest Hawaiian Islands. Pac Sci 43:223–233

    Google Scholar 

  • Abbott IA (1999) Marine red algae of the Hawaiian Islands. Bishop Museum Press, Honolulu

    Google Scholar 

  • Abbott IA, Huisman JM (2003) New species, observations, and a list of new records of brown algae (Phaeophyceae) from the Hawaiian Islands. Phycol Res 51(3):173–185

    Google Scholar 

  • Abbott IA, Huisman JM (2004) Marine green and brown algae of the Hawaiian Islands. Bishop Museum Press, Honolulu

    Google Scholar 

  • Addy J, Hartley J, Tibbetts P (1984) Ecological effects of low toxicity oil-based mud drilling in the Beatrice oilfield. Mar Pollut Bull 15(12):429–436

    Article  CAS  Google Scholar 

  • Agegian CE, Abbott IA (1985) Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. Proc 5th Int Coral Reef Congr Tahiti 5:47–50

    Google Scholar 

  • Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois Volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Google Scholar 

  • Amado-Filho GM, Maneveldt G, Pereira-Filho G, Manso R, Bahia R, Barros-Barreto M, Guimarães S (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Cienc Mar 36(4):371–391

    Article  Google Scholar 

  • Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7(4):e35171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amado-Filho GM, Bahia RG, Pereira-Filho GH, Longo LL (2017) South Atlantic rhodolith beds: latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. In: Riosmena-Rodriguez R, Nelson W, Aguirre J (eds) Rhodolith/maërl beds: a global perspective. Coastal Research Library, vol 15. Springer, New York, pp 229–318

    Google Scholar 

  • Anderson TJ, Nichol S, Radke L, Heap AD, Battershill C, Hughes M, Siwabess PJ, Barrie V, Alvarez de Glasby B, Tran M, Daniell J, Shipboard Party (2011) Seabed environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117—Post-Survey Report. Geoscience Australia. Record 2011(/08):59

    Google Scholar 

  • Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105:17442–17446

    Article  PubMed  PubMed Central  Google Scholar 

  • Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res Part I 48:2185–2194

    Article  Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35(1):63–75

    Article  Google Scholar 

  • Augier H, Boudouresque CF (1978) Végétation marine de l’ile de Port-Cros (Parc National), XVI: Contribution à l’étude de l’epiflore du détrique côtier. Trav Sci Parc Nation Port-Cros 4:101–125

    Google Scholar 

  • Bahia RG, Abrantes DP, Brasileiro PS, Pereira Filho GH, Amado Filho GM (2010) Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil. Braz J Oceanogr 58(4):323–337

    Article  Google Scholar 

  • Bahia RG, Amado-Filho GM, Maneveldt GW, Adey WH, Johnson G, Marins BV, Longo LL (2014) Sporolithon tenue sp. nov. (Sporolithales, Corallinophycidae, Rhodophyta): A new rhodolith-forming species from the tropical southwest Atlantic. Phycol Res 62(1):44–54

    Google Scholar 

  • Bahia RG, Amado-Filho GM, Maneveldt GW, Adey WH, Johnson G, Jesionek MB, Longo LL (2015) Sporolithon yoneshigueae sp. nov. (Sporolithales, Corallinophycidae, Rhodophyta), a new rhodolith-forming coralline alga from the southwest Atlantic. Phytotaxa 224:140–158

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24(3):475–479

    Article  Google Scholar 

  • Baker EK, Puglise KA, Harris PT (2016) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi/Arendal

    Google Scholar 

  • Ballantine DL (1982) Halimeda hummii sp. nov., Halimeda cryptica v. acerifolia var. nov. (Caulerpales, Chlorophyta), and additional records of Halimeda species from Puerto Rico. J Phycol 18:86–91

    Article  Google Scholar 

  • Ballantine DL (1990) Ceramium bisporum sp. nov. (Rhodophyta, Ceramiales), an unusual new species from deep-water habitats in the Caribbean. Phycologia 29:146–149

    Article  Google Scholar 

  • Ballantine DL, Aponte NE (1996) Verdigellas nektongammea (Tetrasporales, Chlorophyta), a new deep-water species from the Bahamas. Nova Hedwigia 62:425–429

    Google Scholar 

  • Ballantine DL, Aponte NE (2002a) A checklist of the benthic marine algae known to Puerto Rico, second revision. Constancea 83, online continuation of California Publications in Botany (1902–2002): http://ucjeps.berkeley.edu/constancea/83/ballantine_aponte/checklist.html

  • Ballantine DL, Aponte NE (2002b) Botryocladia bahamense sp. nov. (Rhodymeniaceae, Rhodophyta) from the Bahamas, Western Atlantic. Cryptogam Algol 23:123–130

    Google Scholar 

  • Ballantine DL, Aponte NE (2003) An annotated checklist of deep-reef benthic marine algae from Lee Stocking Island, Bahamas (Western Atlantic) I. Chlorophyta and Heterokontophyta. Nova Hedwigia 76:113–127

    Google Scholar 

  • Ballantine DL, Aponte NE (2005) An annotated checklist of deep-reef benthic marine algae from Lee Stocking Island, Bahamas II. Rhodophyta. Nova Hedwigia 80:147–171

    Article  Google Scholar 

  • Ballantine DL, Norris JN (1994) Verdigellas, a new palmelloid genus (Tetrasporales, Chlorophyta) from the tropical Western Atlantic. Cryptogam Bot 4:368–372

    Google Scholar 

  • Ballantine DL, Ruíz H (2010) Two new deepwater Peyssonnelia species, Peyssonnelia iridescens and Peyssonnelia gigaspora (Peyssonneliaceae, Rhodophyta) from Puerto Rico, Caribbean Sea. Phycologia 49:537–544

    Article  Google Scholar 

  • Ballantine DL, Ruíz H, Wynne MJ (2002) Notes on the benthic marine algae of Puerto Rico VII. Further additions of Rhodophyta species. Caribb J Sci 38:252–256

    Google Scholar 

  • Ballantine DL, Ruíz H, Aponte NE (2009) Notes on the benthic marine algae of Puerto Rico IX: Additions to the flora. Bot Mar 52:229–235

    Article  Google Scholar 

  • Ballantine DL, Athanasiadis A, Ruíz H (2011) Notes on the benthic marine algae of Puerto Rico X: Additions to the flora. Bot Mar 54:293–302

    Google Scholar 

  • Ballantine DL, Ruíz Torres H, Aponte NE (2016) The mesophotic, coral reef-associated, marine algal flora of Puerto Rico, Caribbean Sea. Smithson Contrib Bot 105, 42 p

    Google Scholar 

  • Ballantine DL, Ruíz H, Lozada-Troche C, Norris JN (2017) The genus Ethelia (Etheliaceae, Rhodophyta) in the Bahamas and Puerto Rico in the Western Atlantic. Bot Mar 60(6):639–652

    Google Scholar 

  • Ballesteros E (1994) The deep-water Peyssonnelia beds from the Balearic Islands (Western Mediterranean). Mar Ecol 15:233–253

    Google Scholar 

  • Barbera C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall-Spencer JM, De La Huz C, Lanfranco E, Lastra M, Moore P (2003) Conservation and management of Northeast Atlantic and Mediterranean maërl beds. Aquat Conserv Mar Freshwat Ecosyst 13:65–76

    Google Scholar 

  • Bare AY, Grimshaw KL, Rooney JJ, Sabater MG, Fenner D, Carroll B (2010) Mesophotic communities of the insular shelf at Tutuila, American Samoa. Coral Reefs 29:369–377

    Article  Google Scholar 

  • Batista AT, Leite TS (2016) Octopus insularis (Cephalopoda: Octopodidae) on the tropical coast of Brazil: where it lives and what it eats. Braz J Oceanogr 64:353–364

    Article  Google Scholar 

  • Belliveau SA, Paul VJ (2002) Effects of herbivory and nutrients on the early colonization of crustose coralline and fleshy algae. Mar Ecol Prog Ser 232:105–114

    Article  Google Scholar 

  • Belsher T, Meinesz A (1995) Deep-water dispersal of the tropical alga Caulerpa taxifolia introduced into the Mediterranean. Aquat Bot 51(1–2):163–169

    Article  Google Scholar 

  • Berlandi RM, Figueiredo MAO, Paiva PC (2012) Rhodolith morphology and the diversity of polychaetes off the southeastern Brazilian coast. J Coast Res 28:280–287

    Article  Google Scholar 

  • BIOMAERL team (1999) Final report, BIOMAERL project (Coordinator: PG Moore, University Marine Biological Station Millport, Scotland), EC Contract No. MAS3-CT95-0020 1–2:1–973

    Google Scholar 

  • Blair SM, Norris JN (1988) The deep-water species of Halimeda Lamouroux (Halimedaceae, Chlorophyta) from San Salvador Island, Bahamas: species composition, distribution and depth records. Coral Reefs 6(3–4):227–236

    Article  Google Scholar 

  • Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maërl species (Corallinales, Rhodophyta) from Northern Europe. Phycologia (6):606–612

    Google Scholar 

  • Blyth-Skyrme VJ, Rooney JJ, Parrish FA, Boland RC (2013) Mesophotic coral ecosystems—potential candidates as essential fish habitat and habitat areas of particular concern. Pacific Islands Fish Sci Cent, Natl Mar Fish Sci Cent Admin Rep H-13-02, 53 p

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bordehore C, Ramos-Esplá AA, Riosmena-Rodriguez R (2003) Comparative study of two maërl beds with different otter trawling history, southeast Iberian Peninsula. Aquat Conserv 13:S43–S54

    Article  Google Scholar 

  • Boudouresque C, Meinesz A, Ribera M, Ballesteros E (1995) Spread of the green alga Caulerpa taxifolia (Caulerpales, Chlorophyta) in the Mediterranean: possible consequences of a major ecological event. Sci Mar 59(Suppl 1):21–29

    Google Scholar 

  • Brasileiro P, Pereira-Filho G, Bahia R, Abrantes D, Guimarães S, Moura R, Francini-Filho R, Bastos A, Amado-Filho G (2016) Macroalgal composition and community structure of the largest rhodolith beds in the world. Mar Biodivers 46(2):407–420

    Article  Google Scholar 

  • Bridge T, Guinotte J (2013) Mesophotic coral reef ecosystems in the Great Barrier Reef World Heritage Area: their potential distribution and possible role as refugia from disturbance, Research Publication No 109, Great Barrier Reef Marine Park Authority, Townsville

    Google Scholar 

  • Bridge TCL, Done TJ, Beaman RJ, Friedman A, Williams SB, Pizarro O, Webster JM (2011) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30:143–153

    Article  Google Scholar 

  • Bridge T, Beaman R, Done T, Webster J (2012) Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE 7(10):e48203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooke BP, McArthur MA, Woodroffe CD, Linklater M, Nichol SL, Anderson TJ, Mleczko R, Sagar S (2012) Geomorphic features and infauna diversity of a subtropical mid-ocean carbonate shelf: Lord Howe Island, southwest Pacific Ocean. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat: geoHab atlas of seafloor geomorphic features and benthic habitats. Elsevier, Amsterdam

    Google Scholar 

  • Cabioch J (1969) Persistance de stades juveniles et possibilite d’une neotenie chez le Lithophyllum incrustans Philippi. C R Hebd Seances Acad Serie D 268:497–500

    Google Scholar 

  • Camacho O, Sauvage T, Fredericq S (2019) Taxonomic transfer of Syringoderma to Microzonia (Syringodermataceae, Syringodermatales), including a new record of Microzonia floridana comb. nov. for the Gulf of Mexico. Phycologia 57:413–421

    Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261(5117):78–82

    Article  Google Scholar 

  • Carro B, Lopez L, Peña V, Bárbara I, Barreiro R (2014) DNA barcoding allows the accurate assessment of European maërl diversity: a proof-of-concept study. Phytotaxa 190(1):176–189

    Google Scholar 

  • Cavalcanti GS, Gregoracci GB, Longo LL, Bastos AC, Ferreira CM, Francini-Filho RB, Paranhos R, Ghisolfi RD, Krüger R, Güth AZ (2013) Sinkhole-like structures as bioproductivity hotspots in the Abrolhos Bank. Cont Shelf Res 70:126–134

    Article  Google Scholar 

  • Ceccherelli G, Piazzi L, Balata D (2002) Spread of introduced Caulerpa species in macroalgal habitats. J Exp Mar Biol Ecol 280(1):1–11

    Article  Google Scholar 

  • Chapman D, Ranelletti M, Kaushik S (2006) Invasive marine algae: an ecological perspective. Bot Rev 72(2):153–178

    Article  Google Scholar 

  • Cheney DP, Dyer JP (1974) Deep-water benthic algae of the Florida Middle Ground. Mar Biol 27(3):185–190

    Article  Google Scholar 

  • Clark MR, Trnski T, Constantine R, Aguirre D, Barker J, Betty E, Bowden DA, Connell A, Duffy C, George S, Hannam S, Liggins L, Middleton C, Mills S, Pallentin A, Riekkola L, Sampey A, Sewell M, Spong K, Stewart A, Stewart R, Struthers C, van Oosterom L (2017) Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612). New Zealand Aquatic Environment and Biodiversity Report No 179, 95 p

    Google Scholar 

  • Coleman F, Dennis G, Jaap W, Schmahl GP, Koenig C, Reed S, Beaver C (2004) NOAA CRCG 2002 habitat characterization of Pulley Ridge and the Florida Middle Grounds – Part I: status and trends in habitat characterization of the Florida Middle Grounds. Final report to the NOAA Coral Reef Conservation Grant Program, 135 p

    Google Scholar 

  • Colin PL, Devaney DM, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38(1):111–128

    Google Scholar 

  • Cox TE, Spalding HL, Foster MS (2017) Spatial and temporal variation of diverse intertidal algal assemblages in Southwest Oʻahu. Mar Ecol 38(3):e12429

    Google Scholar 

  • Dalton SJ, Roff G (2013) Spatial and temporal patterns of Eastern Australia subtropical coral communities. PLoS ONE 8(9):e75873

    Google Scholar 

  • Davies AJ, Roberts JM, Hall-Spencer J (2007) Preserving deep-sea natural heritage: emerging issues in offshore conservation and management. Biol Conserv 138:299–312

    Article  Google Scholar 

  • Dawson EY (1957) An annotated list of marine algae from Eniwetok Atoll, Marshall Islands. Pac Sci 11:92–132

    Google Scholar 

  • De Grave S, Whitaker A (1999) Benthic community re-adjustment following dredging of a muddy-maërl matrix. Mar Pollut Bull 38(2):102–108

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef, Great Barrier Reef Marine Park. Authority and Australian Greenhouse Office, Townsville, pp 153–192

    Google Scholar 

  • Diaz-Pulido G, Anthony KR, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Doty M, Gilbert W, Abbott I (1974) Hawaiian marine algae from seaward of the algal ridge. Phycologia 13:345–357

    Article  Google Scholar 

  • Drew EE (2001) Chapter 16: Ocean nutrients to sediment banks via tidal jets and Halimeda meadows. In: Oceanographic processes of coral reefs: physical and biological links in the Great Barrier Reef. CRC Press, Boca Raton, pp 255–268

    Google Scholar 

  • Drew EA, Abel KM (1988) Studies on Halimeda I. Coral Reefs 6:207–218

    Article  Google Scholar 

  • Dullo WC, Moussavian E, Brachert TC (1990) The foralgal crust facies of the deeper fore reefs in the Red Sea: a deep diving survey by submersible. Geobios 23:261–281

    Article  Google Scholar 

  • Easton EE, Gorny M, Mecho A, Sellanes J, Gaymer C, Spalding HL, Aburto J (2019) Chile and Salas y Gómez Ridge. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 477–490

    Google Scholar 

  • Fabricius KE, De’ath G, Puotinen ML, Done T, Cooper TF, Burgess SC (2008) Disturbance gradients on inshore and offshore coral reefs caused by a severe tropical cyclone. Limnol Oceanogr 53:690–704

    Article  Google Scholar 

  • Felder DL, Camp DK (2009) Gulf of Mexico origin, waters, and biota. Volume 1, Biodiversity. Texas A&M University Press, College Station, 1393 p

    Google Scholar 

  • Felder DL, Thoma BP, Schmidt WE, Sauvage T, Self-Krayesky SL, Chistoserdov A, Bracken-Grissom HD, Fredericq S (2014) Seaweeds and decapod crustaceans on Gulf deep banks after the Macondo Oil Spill. Bioscience 64(9):808–819

    Article  Google Scholar 

  • Figueiredo de Oliveira MA, Horta PA, de Gusmão Pedrini A, de Castro Nunes JM (2008) Benthic marine algae of the coral reefs of Brazil: a literature review. Oecologia Brasiliensis 12(2):258–269

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places – minireview. J Phycol 37:659–667

    Article  Google Scholar 

  • Foster MS, McConnico LM, Lundsten L, Wadsworth T, Kimball T, Brooks LB, Medina-López M, Riosmena-Rodríguez R, Hernandez-Carmona G, Vásquez-Elizondo RM, Johnson S (2007) Diversidad e historia natural de una comunidad de Lithothamnion muelleri y Sargassum horridum en el Golfo de California. Cienc Mar 33(4):367–384

    Google Scholar 

  • Francini-Filho RB, de Moura RL (2008) Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat Conserv Mar Freshwat Ecosyst 18(7):1166–1179

    Article  Google Scholar 

  • Fredericq S, Cho TO, Earle SA, Gurgel CF, Krayesky DM, Mateo-Cid LE, Mendoza Gonzáles A, Norris JN, Suárez AM (2009) Seaweeds of the Gulf of Mexico. In: Felder DL, Camp DL (eds) Gulf of Mexico origin, waters and biota, vol 1. Texas A&M University Press, College Station, pp 187–259

    Google Scholar 

  • Fredericq S, Arakaki N, Camacho O, Gabriel D, Krayesky D, Self-Krayesky S, Rees G, Richards J, Sauvage T, Venera-Ponton D (2014) A dynamic approach to the study of rhodoliths: a case study for the northwestern Gulf of Mexico. Cryptogam Algol 35(1):77–98

    Google Scholar 

  • Freile D, Milliman J, Hillis L (1995) Leeward bank margin Halimeda meadows and draperies and their sedimentary importance on the Western Great Bahama Bank slope. Coral Reefs 14(1):27–33

    Google Scholar 

  • Fricke HW, Meischne D (1985) Depth limits of Bermudan scleractinian corals: a submersible survey. Mar Biol 88:175–187

    Article  Google Scholar 

  • Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E (2014) The real bounty: marine biodiversity in the Pitcairn Islands. PLoS ONE 9(6):e100142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavio B, Fredericq S (2005) New species and new records of offshore members of the Rhodymeniales (Rhodophyta) in the northern Gulf of Mexico. Gulf Mexico Sci 1:58–83

    Google Scholar 

  • Gavio B, Hickerson E, Fredericq S (2005) Platoma chrysymenioides sp. nov. (Schizymeniaceae), and Sebdenia integra sp. nov. (Sebdeniaceae), two new red algal species from the northwestern Gulf of Mexico, with a phylogenetic assessment of the Cryptonemiales complex (Rhodophyta). Gulf Mexico Sci (1):38–57

    Google Scholar 

  • GESAMP (IMO/FAO/UNESCO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1993) Impact of oil and related chemicals and wastes on the marine environment. GESAMP Rep Stud 50:1–180

    Google Scholar 

  • Gilmartin M (1960) The ecological distribution of the deep water algae of Eniwetok Atoll. Ecology 41:210–221

    Article  Google Scholar 

  • Goldberg NA, Kendrick GK (2004) A catalogue of the marine macroalgae found in the western islands of the Recherche Archipelago (Western Australia, Australia), with notes on their distribution in relation to island location, depth, and exposure to wave energy. In: Kendrick G, Harvey E, McDonald J, Pattiaratchi C, Cappo M, Fromont J, Shortis M, Grove S, Bickers A, Baxter K, Goldberg N, Kletczkowski M, Butler J (eds) Characterising the fish habitats of the Recherche Archipelago. Fisheries Research and Development Corporation Report, Project No 2001/060, ISBN: 1 74052, vol 123, pp 423–527

    Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. PNAS 104:16576–16580

    Article  PubMed  PubMed Central  Google Scholar 

  • Grall J, Glemarec M (1997) Biodiversite des fonds de maërl en Bretagne: approche fonctionnelle et impacts anthropogeniques. Vie Milieu 47:339–349

    Google Scholar 

  • Grall J, Hall-Spencer JM (2003) Problems facing maërl conservation in Brittany. Aquat Conserv 12:55–64

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Hanisak MD, Blair SM (1988) The deep-water macroalgal community of the East Florida continental shelf (USA). Helgol Meeresunters 42:133–163

    Article  Google Scholar 

  • Harmelin-Vivien ML (1994) The effects of storms and cyclones on coral reefs: a review. J Coast Res 12:211–231

    Google Scholar 

  • Harmelin-Vivien M, Laboute L (1986) Catastrophic impact of hurricanes on atoll outer reef slopes in the Tuamotu (French Polynesia). Coral Reefs 5:55–62

    Article  Google Scholar 

  • Hartman WD (1973) Beneath Caribbean reefs. Discovery 9:13–26

    Google Scholar 

  • Harvey AS, Woelkerling WJ (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cienc Mar 33:411–426

    Article  Google Scholar 

  • Heap AD, Anderson T, Falkner I, Przeslawski R, Whiteway T, Harris PT (2009) Seascapes for the Australian margin and adjacent seabed. Geoscience Australia, Record 2011/06, 91 p

    Google Scholar 

  • Hernandez-Kantun JJ, Gabrielson P, Hughey JR, Pezzolesi L, Rindi F, Robinson NM, Peña V, Riosmena-Rodriguez R, Le Gall L, Adey W (2016) Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia 55(6):619–639

    Article  CAS  Google Scholar 

  • Heyward A, Jones R, Meeuwig J, Burns K, Radford B, Colquhoun J, Cappo M, Case M, O’Leary R, Fisher R, Meekan M, Stowar M (2012) Monitoring study S5 banks and shoals, Montara 2011 offshore banks assessment survey. Report for PTTEP Australasia (Ashmore Cartier) Pty, Ltd. Australian Institute of Marine Science, Townsville, 253 p

    Google Scholar 

  • Hill NA, Lucieer V, Barrett NS, Anderson TJ, Williams SB (2014) Filling the gaps: predicting the distribution of temperate reef biota using high resolution biological and acoustic data. Estuar Coast Shelf Sci 147:137–147

    Article  Google Scholar 

  • Hills-Colinvaux L (1986) Deep water populations of Halimeda in the economy of an atoll. Bull Mar Sci 38:155–169

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29:247–251

    Article  Google Scholar 

  • Hine AC, Hallock P, Harris MW, Mullins HT, Belknap DF, Jaap WC (1988) Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Sea. Coral Reefs 6(3–4):173–178

    Article  Google Scholar 

  • Hodgson LM, McDermid KJ (2000) Marine plants of Pohnpei and Ant Atoll: Chlorophyta, Phaeophyta and Magnoliophyta. Micronesica-Agana 32(2):289–308

    Google Scholar 

  • Holmes KW, Van Niel KP, Radford B, Kendrick GA, Grove SL (2008) Modelling distribution of marine benthos from hydroacoustics and underwater video. Cont Shelf Res 28:1800–1810

    Article  Google Scholar 

  • Hopkins TS, Blizzard DR, Brawley SA, Earle SA, Grimm DE, Gilbert DK, Johnson PG, Livingston EH, Lutz CH, Shaw JK, Shaw BB (1977) A preliminary characterization of the biotic components of composite strip transects on the Florida Middle Grounds, northeastern Gulf of Mexico. Proc 3rd Int Coral Reef Symp 1:31–37

    Google Scholar 

  • Horta PA, Riul P, Amado Filho GM, Gurgel CFD, Berchez F, Nunes JMC, Scherner F, Pereira S, Lotufo T, Peres L (2016) Rhodoliths in Brazil: Current knowledge and potential impacts of climate change. Braz J Oceanogr 64(SPE2):117–136

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Huisman JM, Abbott IA, Smith CM (2007) Hawaiian reef plants. University of Hawaiʻi Sea Grant College Program, Honolulu

    Google Scholar 

  • Hurrey LP, Pitcher CR, Lovelock CE, Schmidt S (2013) Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar Ecol Prog Ser 492:69–83

    Article  Google Scholar 

  • Jensen PR, Gibson RA, Littler MM, Littler DS (1985) Photosynthesis and calcification in four deep-water Halimeda species (Chlorophyceae, Caulerpales). Deep-Sea Res 32(4A):451–464

    Article  CAS  Google Scholar 

  • Jesionek MB, Bahia RG, Hernández-Kantún JJ, Adey WH, Yoneshigue-Valentin Y, Longo LL, Amado-Filho GM (2016) A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. Algae 31(4):317–340

    Article  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3):473–483

    Article  Google Scholar 

  • Kahng SE, Kelley CD (2007) Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the ‘Auʻau Channel, Hawaiʻi. Coral Reefs 26(3):679–687

    Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest, zooxanthellate scleractinian corals in the world? Coral Reefs 25(2):254

    Article  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Article  Google Scholar 

  • Kaiser MJ, Clarke KR, Hinz H, Austen MC, Somerfield PJ, Karakassis I (2006) Global analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser 311:1–4

    Article  Google Scholar 

  • Kamenos NA, Burdett HL, Aloisio E, Findlay HS, Martin S, Longbone C, Dunn J, Widdicombe S, Calosi P (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Chang Biol 19(12):3621–3628

    Article  PubMed  PubMed Central  Google Scholar 

  • Keegan BF (1974) The macrofauna of maërl substrates of the West coast of Ireland. Cah Biol Mar 4:513–540

    Google Scholar 

  • Kempf M (1970) Notes on the benthic bionomy of the N-NE Brazilian shelf. Mar Biol 5(3):213–224

    Article  Google Scholar 

  • Kendrick G, Harvey E, McDonald J, Pattiaratchi C, Cappo M, Fromont J, Shortis M, Grove S, Bickers A, Baxter K, Goldberg N, Kletczkowski M, Butler J (2004) Characterising the fish habitats of the Recherche Archipelago. Fisheries Research and Development Corporation Report, Project No 2001/060, ISBN: 1 74052 123, 600 p

    Google Scholar 

  • Kingston PF (1992) Impact of offshore oil production installations on the benthos of the North Sea. ICES J Mar Sci 49:45–53

    Article  Google Scholar 

  • Kirk J (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, New York

    Google Scholar 

  • Klein J, Verlaque M (2008) The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull 56(2):205–225

    Article  CAS  PubMed  Google Scholar 

  • Krayesky-Self S, Richards JL, Rahmatian M, Fredericq S (2016) Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy. J Phycol 52(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Krayesky-Self S, Schmidt WE, Phung D, Henry C, Sauvage T, Camacho O, Felgenhauer BE, Fredericq S (2017) Eukaryotic life inhabits rhodolith-forming coralline algae (Hapalidiales, Rhodophyta), remarkable marine benthic microhabitats. Sci Rep 7:45850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavrado HP (2006) Caracterização do ambiente e da comunidade bentônica. In: Lavrado HP, Ignácio BL (eds) Bidiversidade da costa central da zona econômica exclusiva Brasileira. Museu Nacional Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Leichter JJ, Stokes MD, Genovese SJ (2008) Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser 356:123–138

    Article  Google Scholar 

  • Leliaert F, Tronholm A, Lemieux C, Turmel M, DePriest MS, Bhattacharya D, Karol KG, Fredericq S, Zechman FW, Lopez-Bautista JM (2016) Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci Rep 6:25367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP, Slattery M (2011) Invasive lionfish causes a phase shift to algal dominated communities at mesophotic depths on a Bahamian coral reef. Biol Invasions 13:1855–1866

    Article  Google Scholar 

  • Lesser MP, Slattery M, Leichter J (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288(5467):852–854

    Article  CAS  PubMed  Google Scholar 

  • Liddell WD, Ohlhorst SL (1988) Hard substrata community patterns, 1–120 m, North Jamaica. Palaios 3: 413–423

    Google Scholar 

  • Liddell WD, Avery WE, Ohlhorst SL (1997) Patterns of benthic community structure, 10–250 m, the Bahamas. Proc 8th Int Coral Reef Symp 1:437–442

    Google Scholar 

  • Linklater M, Carroll AG, Hamylton SM, Jordan AR, Brooke BP, Nichol SL, Woodroffe CD (2016) High coral cover on a mesophotic, subtropical island platform at the limits of coral reef growth. Cont Shelf Res 130:34–46

    Article  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227(4682):57–59

    Article  CAS  PubMed  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep-Sea Res 33(7A):881–892

    Article  CAS  Google Scholar 

  • Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J Exp Mar Biol Ecol 150(2):163–182

    Article  Google Scholar 

  • Lobban CS, Tsuda RT (2003) Revised checklist of benthic marine macroalgae and seagrasses of Guam and Micronesia. Micronesica 35–36:54–99

    Google Scholar 

  • Locker SD, Armstrong RA, Battista TA, Rooney JJ, Sherman C, Zawada DG (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29:329–345

    Article  Google Scholar 

  • Lucieer V, Barrett N, Hill N, Nichol SL (2012) Characterization of shallow inshore coastal reefs on the Tasman Peninsula, southeastern Tasmania, Australia. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat: geoHab atlas of seafloor geomorphic features and benthic habitats. Elsevier, Amsterdam

    Google Scholar 

  • Lund M, Peter J, Davies PJ, Braga J (2000) Coralline algal nodules off Fraser Island, Eastern Australia. Facies 42:25–34

    Article  Google Scholar 

  • Lundquist C, Bulmer RH, Clark MR, Hillman JR, Nelson WA, Norrie CR, Rowden AA, Tracey DM, Hewitt JE (2017) Challenges for the conservation of marine small natural features. Biol Conserv 211:69–79

    Article  Google Scholar 

  • Lüning K (1990) In: Yarish C, Kirkman H (eds) Seaweeds: their environment, biogeography, and ecophysiology. Wiley-Interscience, New York

    Google Scholar 

  • MacDiarmid A, Bowden D, Cummings V, Morrison M, Jones E, Kelly M, Neil H, Nelson W, Rowden A (2013) Sensitive marine benthic habitats defined. Prepared for Ministry for the Environment. NIWA Client Report No WLG2013–18

    Google Scholar 

  • Mair JM, Matheson I, Appelbee JF (1987) Offshore macrobenthic recovery in the Murchison field following the termination of drill-cuttings discharges. Mar Pollut Bull 18(12):628–634

    Article  CAS  Google Scholar 

  • Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs 4(3):141–150

    Article  Google Scholar 

  • Marins BV, Amado-Filho GM, Barreto MBB, Longo LL (2012) Taxonomy of the southwestern Atlantic endemic kelp: Laminaria abyssalis and Laminaria brasiliensis (Phaeophyceae, Laminariales) are not different species. Phycol Res 60:51–60

    Article  CAS  Google Scholar 

  • Marins BV, Amado-Filho GM, Barbarino E, Pereira-Filho GH, Longo LL (2014) Seasonal changes in population structure of the tropical deep-water kelp Laminaria abyssalis. Phycol Res 62:55–62

    Article  CAS  Google Scholar 

  • Markager S, Sand-Jensen K (1992) Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser 88(1):83–92

    Article  Google Scholar 

  • Marshall JF, Davies PJ (1988) Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6(3–4):139–148

    Article  Google Scholar 

  • Martin S, Hall-Spencer JM (2017) Effects of ocean warming and acidification on rhodolith/maërl beds. In: Rhodolith/Maërl beds: a global perspective. Springer, Cham

    Google Scholar 

  • Marzinelli EM, Williams SB, Babcock RC, Barrett NS, Johnson CR, Jordan A, Kendrick GA, Pizarro OR, Smale DA, Steinberg PD (2015) Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10(2):e0118390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo-Cid LE, Mendoza-González C, Fredericq S (2013) A checklist of subtidal seaweeds from Campeche Banks, Mexico. Acta Bot Venez 36:95–108

    Google Scholar 

  • McDermid KJ, Abbott IA (2006) Deep subtidal marine plants from the northwestern Hawaiian Islands: new perspectives on biogeography. Atoll Res Bull 543:525–532

    Google Scholar 

  • McDermid KJ, Hodgson LM, Abbott IA (2002) Marine plants of Pohnpei and Ant Atoll: Rhodophyta, with biogeographic comparisons to other Pacific atolls and island groups. Micronesica-Agana 34(2):113–140

    Google Scholar 

  • McNeil MA, Webster JM, Beaman RJ, Graham TL (2016) New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35:1343–1355

    Article  Google Scholar 

  • Meinesz A, Jaubert J, Denizot M (1981) Distribution of the algae belonging to the genus Caulerpa in French Polynesia atoll of Takapoto and island of Moorea. Proc 5th Int Coral Reef Cong 2:431–437

    Google Scholar 

  • Menza C, Kendall M, Rogers C, Miller J (2007) A deep reef in deep trouble. Cont Shelf Res 27(17):2224–2230

    Article  Google Scholar 

  • Millar AJK, Payri CE (2006) New records of marine benthic algae from the Lagon Sud-Ouest of New Caledonia, South Pacific. Phycol Res 54:154–170

    Article  Google Scholar 

  • Milliman JD (1977) Role of calcareous algae in Atlantic continental margin sedimentation. In: Fossil Algae. Springer, Berlin

    Google Scholar 

  • Minnery GA (1990) Crustose coralline algae from the Flower Garden Banks, northwestern Gulf of Mexico: controls on distribution and growth-morphology. J Sediment Petrol 60:992–1007

    Google Scholar 

  • Montgomery AD, Fenner D, Kosaki RK, Pyle RL, Wagner D, Toonen RJ (2019) American Samoa. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 387–407

    Google Scholar 

  • Moore C, Cappo M, Radford B, Heyward A (2017) Submerged oceanic shoals of north Western Australia are a major reservoir of marine biodiversity. Coral Reefs 36(3):719–734

    Google Scholar 

  • Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification:” Role of high Mg-calcites. Geochim Cosmochim Acta 70(23):5814–5830

    Google Scholar 

  • Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117

    Article  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, Bastos AC, Almeida MG, Silva JM, Araujo BF (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2(4):e1501252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N’Yeurt ADR, Payri CE (2007) Marine algal flora of French Polynesia II. Chlorophyceae (green algae). Cryptogam Algol 28:3–88

    Google Scholar 

  • Nelson WA (2009) Calcified macroalgae: critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801

    Article  CAS  Google Scholar 

  • Nelson WA, D’Archino R (2010) Bay of Islands OS20/20 survey report. Chapter 12: Attached benthic macroalgae. NIWA Client Report No WLG2010-38, 31 p

    Google Scholar 

  • Nelson WA, Neill KF, D’Archino R, Anderson T, Beaumont J, Dalen J (2015) Beyond diving depths: deepwater macroalgae in the New Zealand region. Mar Biodivers 45:797–818

    Article  Google Scholar 

  • Nelson WA, Duffy C, Trnski T, Stewart R (2018) Mesophotic Ecklonia radiata (Laminariales) at Rangitāhua, Kermadec Islands, New Zealand. Phycologia 57:534–538

    Article  Google Scholar 

  • Nichol SL, Anderson TJ, McArthur M, Barrett N, Heap AD, Siwabessy PJW, Brooke B (2009) Southeast Tasmania temperate reef survey, post survey report. Geoscience Australia, Record 2009/43, 73 p

    Google Scholar 

  • Nichol SL, Anderson TJ, Battershill C, Brooke BP (2012) Submerged reefs and aeolian dunes as inherited habitats, Point Cloates, Carnarvon Shelf, Western Australia. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat: geoHab atlas of seafloor geomorphic features and benthic habitats. Elsevier, Amsterdam

    Google Scholar 

  • Noisette F, Duong G, Six C, Davoult D, Martin S (2013) Effects of elevated pCO on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J Phycol 49(4):746–757

    Google Scholar 

  • Norris JN, Olsen JL (1991) Deep-water green algae from the Bahamas, including Cladophora vandenhoekii sp. nov. (Cladophorales). Phycologia 30(4):315–328

    Article  Google Scholar 

  • Nugues MM, Bak RP (2008) Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curacao. Coral Reefs 27(2):389–393

    Article  Google Scholar 

  • O’Leary JK, Potts DC, Braga JC, McClanahan TR (2012) Indirect consequences of fishing: reduction of coralline algae suppresses juvenile coral abundance. Coral Reefs 31:547–559

    Article  Google Scholar 

  • Occhipinti-Ambrogi A (2007) Global change and marine communities: alien species and climate change. Mar Pollut Bull 55(7–9):342–352

    Article  CAS  PubMed  Google Scholar 

  • Ohba H, Victor S, Golbuu Y, Yukihira H (2007) Tropical marine plants of Palau. Palau International Coral Reef Center, Koror, pp 1–153

    Google Scholar 

  • Pardo C, Lopez L, Peña V, Hernández-Kantún J, Le Gall L, Bárbara I, Barreiro R (2014) A multilocus species delimitation reveals a striking number of species of coralline algae forming maërl in the OSPAR maritime area. PLoS ONE 9(8):e104073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris CB, Hénaff ML, Aman ZM, Subramaniam A, Helgers J, Wang D-P, Kourafalou VH, Srinivasan A (2012) Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environ Sci Technol 46(24):13293–13302

    Article  CAS  PubMed  Google Scholar 

  • Parrish FA, Boland RC (2004) Habitat and reef-fish assemblages of banks in the northwestern Hawaiian Islands. Mar Biol 144(6):1065–1073

    Google Scholar 

  • Peckol P, Ramus J (1988) Abundances and physiological properties of deep-water seaweeds from Carolina outer continental shelf. J Exp Mar Biol Ecol 115(1):25–39

    Article  Google Scholar 

  • Peña V, Adey WH, Riosmena-Rodríguez R, Jung MY, Afonso-Carrillo J, Choi HG, Barbara I (2011) Mesophyllum sphaericum sp. nov. (Corallinales, Rhodophyta): a new maërl-forming species from the Northeast Atlantic. J Phycol 47(4):911–927

    Article  PubMed  Google Scholar 

  • Peña V, Pardo C, López L, Carro B, Hernandez-Kantun J, Adey WH, Bárbara I, Barreiro R, Le Gall L (2015) Phymatolithon lusitanicum sp. nov. (Hapalidiales, Rhodophyta): the third most abundant maërl-forming species in the Atlantic Iberian Peninsula. Cryptogam Algol 36(4):429–459

    Article  Google Scholar 

  • Pereira-Filho GH, Amado-Filho GM, Guimarães SM, Moura RL, Sumida PY, Abrantes DP, Bahia RG, Güth AZ, Jorge RR, Francini Filho RB (2011) Reef fish and benthic assemblages of the Trindade and Martin Vaz island group, southwestern Atlantic. Braz J Oceanogr 59(3):201–212

    Article  Google Scholar 

  • Perez JA, Pezzuto PR (2006) A pesca de arrasto de talude do sudeste e sul do Brasil: tendências da frota nacional entre 2001 e 2003. B Inst Pesca, São Paulo 32:127–150

    Google Scholar 

  • Piazzi L, Ceccherelli G, Cinelli F (2001) Threat to macroalgal diversity: effects of the introduced green alga Caulerpa racemosa in the Mediterranean. Mar Ecol Prog Ser 210:149–159

    Article  Google Scholar 

  • Piller WE, Rasser M (1996) Rhodolith formation induced by reef erosion in the Red Sea, Egypt. Coral Reefs 15(3):191–198

    Article  Google Scholar 

  • Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC, Costa PA, Ferreira BP, Ferreira CEL, Floeter SR (2015) Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PLoS ONE 10(3):e0118180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitcher CR, Doherty PJ, Anderson TJ (2008) Seabed environments, habitats and biological assemblages. In: Hutchings PA, Kingsford MJ, Hoegh Guldberg O (eds) The Great Barrier Reef: biology, environment and management. CSIRO Publishing/Springer, Clayton/Dordrecht, pp 51–58

    Google Scholar 

  • Pochon X, Forsman ZH, Spalding HL, Padilla-Gamiño JL, Smith CM, Gates RD (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawaiʻi. R Soc Open Sci 2:140351

    Google Scholar 

  • Porter JW (1973) Ecology and composition of deep reef communities off the Tongue of the Ocean, Bahama Islands. Discovery 9:3–12

    Google Scholar 

  • Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A et al (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    Google Scholar 

  • Randall JE (1987) Introductions of marine fishes to the Hawaiian Islands. Bull Mar Sci 41:490–502

    Google Scholar 

  • Rao VP, Veerayya M, Nair RR, Dupeuble PA, Lamboy M (1994) Late quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India. Mar Geol 121(3–4):293–315

    Article  Google Scholar 

  • Rattray A, Ierodiaconou D, Laurenson L, Burq S, Reston M (2009) Hydro-acoustic remote sensing of benthic biological communities on the shallow South East Australian continental shelf. Estuar Coast Shelf Sci 84:237–245

    Article  Google Scholar 

  • Reed JK (1985) Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. Proc 5th Int Coral Reef Symp 6:249–254

    Google Scholar 

  • Reed JK, Farrington S, David A, Harter S, Moe H, Horn L, Taylor G, White J, Voss J, Pomponi S, Hanisak D (2017) Characterization of mesophotic coral/sponge habitats and fish assemblages in the regions of Pulley Ridge and Tortugas from ROV Dives during R/V Walton Smith Cruises of 2012 to 2015. NOAA CIOERT Cruise Report. Harbor Branch Oceanographic Institute Technical Report 178. Fort Pierce, FL, 76 p

    Google Scholar 

  • Rezak R, Bright TJ, McGrail DW (1985) Reefs and banks of the northwestern Gulf of Mexico: their geological, biological, and physical dynamics. Wiley, New York, p 259

    Google Scholar 

  • Richards JL, Fredericq S (2018) Sporolithon sinusmexicanum sp. nov. (Sporolithales, Rhodophyta): a new rhodolith-forming species from deepwater rhodolith beds in the Gulf of Mexico. Phytotaxa 350:135–146

    Google Scholar 

  • Richards JL, Gabrielson PW, Fredericq S (2014) New insights into the genus Lithophyllum (Lithophylloideae, Corallinaceae, Corallinales) from deepwater rhodolith beds offshore the NW Gulf of Mexico. Phytotaxa 190(1):162–175

    Article  Google Scholar 

  • Richards JL, Vieira-Pinto T, Schmidt WE, Sauvage T, Gabrielson PW, Oliveira MC, Fredericq S (2016) Molecular and morphological diversity of Lithothamnion spp. (Hapalidiales, Rhodophyta) from deepwater rhodolith beds in the northwestern Gulf of Mexico. Phytotaxa 278(2):81–114

    Google Scholar 

  • Richards JL, Sauvage T, Schmidt WE, Fredericq S, Hughey JR, Gabrielson PW (2017) The coralline genera Sporolithon and Heydrichia (Sporolithales, Rhodophyta) clarified by sequencing type material of their generitypes and other species. J Phycol 53:1044–1059

    Article  CAS  PubMed  Google Scholar 

  • Riosmena-Rodríguez R, Nelson W, Aguirre J (2017) Rhodolith/maërl beds: a global perspective. Springer International Publishing, Switzerland

    Google Scholar 

  • Riul P, Targino CH, Farias JDN, Visscher PT, Horta PA (2008) Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. J Mar Biol Ass UK 88(1):17–19

    Article  Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361–367

    Article  Google Scholar 

  • Rowley SJ, Roberts TE, Coleman RR, Spalding HL, Joseph E, Dorricott MK (2019) Pohnpei, Federated States of Micronesia. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 301–320

    Google Scholar 

  • Sansón M, Reyes J, Afonso-Carrillo J, Muñoz E (2002) Sublittoral and deep-water red and brown algae new from the Canary Islands. Bot Mar 45(1):35–49

    Article  Google Scholar 

  • Sansone FJ, Spalding HL, Smith CM (2017) Sediment biogeochemistry of mesophotic meadows of calcifying macroalgae. Aquat Geochem 23(3):141–164

    Article  CAS  Google Scholar 

  • Santos AS, Riul P, Brasil ACS, Christoffersen ML (2011) Encrusting Sabellariidae (Annelida: Polychaeta) in rhodolith beds, with description of a new species of Sabellaria from the Brazilian coast. J Mar Biol Assoc UK 91:425–438

    Article  Google Scholar 

  • Sauvage T, Schmidt WE, Suda S, Fredericq S (2016) A metabarcoding framework for facilitated survey of endolithic phototrophs with tuf A. BMC Ecol 16(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Scanlon KM, Ackerman SD, Rozycki JE (2003) Texture, carbonate content, and preliminary maps of surficial sediments, Flower Garden Banks area, northwest Gulf of Mexico outer shelf. U.S. Geological Survey Open-File Report 03-002. http://pubs.usgs.gov/of/2003/of03-002/

  • Schmidt W (2010) Mesophotic ADCP and temperature measurements from the El Hoyo transect, La Parguera, Puerto Rico. American Geophysical Union Ocean Sciences Meeting. February 22–26, Portland, OR

    Google Scholar 

  • Schmidt WE, Lozada C, Ballantine DL, Arakaki N, Gabriel D, Norris JN, Fredericq S (2016) Taxonomic transfer of the red algae Chrysymenia enteromorpha and C. wrightii to the genus Botryocladia (Rhodymeniaceae, Rhodymeniales). Phytotaxa 324:122–138

    Article  Google Scholar 

  • Schneider CW (1974) North Carolina marine algae III: a community of Ceramiales (Rhodophyta) on a glass sponge from 60 meters. Bull Mar Sci 24:1093–1101

    Google Scholar 

  • Schultz N, Lane C, Le Gall L, Gey D, Bigney A, De Reviers B, Rousseau F, Schneider C (2015) A barcode analysis of the genus Lobophora (Dictyotales, Phaeophyceae) in the Western Atlantic Ocean with four novel species and the epitypification of L. variegata (J.V. Lamouroux) E.C. Oliveira. Eur J Phycol 50:1–20

    Google Scholar 

  • Secord D (2003) Biological control of marine invasive species: cautionary tales and land-based lessons. Biol Invasions 5(1–2):117–131

    Article  Google Scholar 

  • Semmens BX, Buhle ER, Salomon AK, Pattengill-Semmens CV (2004) A hotspot of non-native marine fishes: evidence for the aquarium trade as an invasion pathway. Mar Ecol Prog Ser 266:239–244

    Article  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2017) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36:433–444

    Google Scholar 

  • Sherwood AR, Zuccarello GC (2016) Phylogeography of tropical Pacific marine algae. In: Hu ZM, Fraser C (eds) Seaweed phylogeography. Springer, Dordrecht, pp 211–226

    Chapter  Google Scholar 

  • Silva PC, Chacana ME (2014) Validation of names of four Hawaiian species of Codium (Chlorophyta). Nova Hedwigia 98:253–256

    Article  Google Scholar 

  • Sissini MN, Oliveira MC, Gabrielson PW, Robinson NM, Okolodkov YB, Riosmena-Rodríguez R, Horta PA (2014) Mesophyllum erubescens (Corallinales, Rhodophyta)—so many species in one epithet. Phytotaxa 190:299–319

    Article  Google Scholar 

  • Slattery M, Lesser MP (2014) Allelopathy in the tropical alga Lobophora variegata: mechanistic basis for a phase shift on mesophotic coral reefs. J Phycol 50:493–505

    Article  PubMed  Google Scholar 

  • Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408(1–2):32–41

    Article  Google Scholar 

  • Slowey N, Holcombe T, Betts M, Bryant W (2008) Habitat islands along the shelf edge of the northwestern Gulf of Mexico. In: Ritchie K, Keller B (eds) A scientific forum on the Gulf of Mexico: the islands in the stream concept. Proceedings, 23 January 2008, Mote Marine Laboratory, Sarasota, FL. Marine Sanctuaries Conservation Series NMSP-08-04, pp 19–24. http://sanctuaries.noaa.gov/science/conservation/gom.html

  • Smith TB, Brandtneris VW, Canals M, Brandt ME, Martens J, Brewer RS, Kadison E, Kammann M, Keller J, Holstein DM (2016) Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front Mar Sci 3:115

    Google Scholar 

  • Spalding HL (2012) Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian Islands. Dissertation, University of Hawaiʻi at Mānoa

    Google Scholar 

  • Spalding HL, Conklin KY, Smith CM, O’Kelly CJ, Sherwood AR (2016) New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J Phycol 52:40–53

    Article  PubMed  Google Scholar 

  • Spalding HL, Copus JM, Bowen BW, Kosaki RK, Longenecker K, Montgomery AD, Padilla-Gamiño JL, Parrish FA, Roth MS, Rowley SJ, Toonen RJ, Pyle RL (2019) The Hawaiian Archipelago. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 445–464

    Google Scholar 

  • Steller DL, Riosmena-Rodríguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv Mar Freshwat Ecosyst 13(S1):S5–S20

    Article  Google Scholar 

  • Strasburg DW, Jones EC, Iversen RT (1968) Use of a small submarine for biological and oceanographic research. ICES J Mar Sci 31(3):410–426

    Article  Google Scholar 

  • Suárez AM, Martínez B, Alfonso Y (2015) Macroalgas marinas de Cuba. Editorial UH, La Habana. ISBN: 978-959-7211-44-0

    Google Scholar 

  • Taylor WR (1950) Plants of Bikini and other northern Marshall Islands. University of Michigan Press, Ann Arbor, pp 1–227

    Google Scholar 

  • Taylor WR (1977) Notes on plants of the genus Caulerpa in the Herbarium of Maxwell S. Doty at the University of Hawaii. Atoll Res Bull 208:1–17

    Article  Google Scholar 

  • Tierney PW, Johnson ME (2011) Stabilization role of crustose coralline algae during Late Pleistocene reef development on Isla Cerralvo, Baja California Sur (Mexico). J Coast Res 28(1):244–254

    Google Scholar 

  • Tsuda RT (1972) Marine benthic algae of Guam. I. Phaeophyta. Micronesica 8:87–115

    Google Scholar 

  • van den Hoek C (1984) World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera. Helgoländer Meeresuntersuchungen 38(2):227

    Article  Google Scholar 

  • Vieira C, Camacho O, Wynne MJ, Mattio L, Anderson RJ, Bolton JJ, Sansón M, D’Hondt S, Leliaert F, Fredericq S, Payri C, De Clerck O (2016) Shedding new light on old algae: matching names and sequences in the brown algal genus Lobophora (Dictyotales, Phaeophyceae). Taxon 65:689–707

    Article  Google Scholar 

  • Villas-Boas AB, Riosmena-Rodríguez R, Amado Filho GM, Maneveldt GW, Figueiredo MAO (2009) Taxonomy of rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil. Phycologia 48:237–248

    Article  Google Scholar 

  • Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B (2014) Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodivers Rec 7(e68):1–10

    Google Scholar 

  • Webster NS, Uthicke S, Botté ES, Flores F, Negri AP (2013) Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Chang Biol 19(1):303–315

    Article  PubMed  Google Scholar 

  • White KN, Weinstein DK, Ohara T, Denis V, Montenegro J, Reimer JD (2017) Shifting communities after typhoon damage on an upper mesophotic reef in Okinawa, Japan. PeerJ 5:e3573

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38(1):327–359

    Article  Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maërl): implications for European marine conservation. Biol Conserv 120(2):279–289

    Article  Google Scholar 

  • Wolanski E, Drew E, Abel K, O’Brien J (1988) Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar Coast Shelf Sci 25:169–201

    Article  Google Scholar 

  • Wright DJ, Roberts JT, Fenner D, Smith JR, Koppers AAP, Naar DF, Hirsch ER, Clift LW, Hogrefe KR (2012) Seamounts, ridges, and reef habitats of American Samoa. Seafloor geomorphology as benthic habitat, vol 58. Elsevier Inc, pp 791–806

    Google Scholar 

  • Yokohama Y (1981) Distribution of the green light-absorbing pigments siphonaxanthin and siphonein in marine green algae. Bot Mar 24:637–640

    CAS  Google Scholar 

  • Yokohama Y, Kageyama A, Ikawa T, Shimura S (1977) A carotenoid characteristic of chlorophycean seaweeds living in deep coastal waters. Bot Mar 20(7):433–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding and support for H. Spalding was from the National Oceanic and Atmospheric Administration (NOAA) Center for Sponsored Coastal Ocean Research (NA07NOS4780188, NA07NOS4780187, NA07NOS478190, NA07NOS4780189), NOAA Coral Reef Conservation Program (NA05OAR4301108, NA09OAR4300219), NOAA’s Deep Sea Coral Research and Technology Program, NOAA Office of National Marine Sanctuaries (Papahānaumokuākea Marine National Monument), NOAA Undersea Research Program’s Hawaiʻi Undersea Research Laboratory (HURL; HC07-11 and HC08-06), NOAA’s Office of Ocean Exploration, National Fish and Wildlife Foundation and the Benioff family, National Science Foundation (DEB-1754117), State of Hawaiʻi Division of Aquatic Resources, and Hawaiʻi Coral Reef Initiative. We also appreciate the assistance of the officers and crew of NOAA SHIP Hi‘ialakai, R/V Kaʻimikai-O-Kanaloa, the Pisces IV and V submersibles, and macroalgal collectors Randy Kosaki, Daniel Wagner, Jason Leonard, Brian Hauk, Keo Lopes, Kelly Gleason, Hadley Owen, Greg McFall, and Matt Ross. Financial support to G.M. Amado-Filho and R.G. Bahia was provided by the Brazilian National Science Agency (CNPq), Brazilian IODP Program (CAPES/MEC), P&D Program ANP/Brasoil (48610.011015/2014-55) and research grants from FAPERJ and CNPq. M. Slattery thanks Deb Gochfeld, Elizabeth Kintzing, and Michael Lesser for assistance in the field, and NSF Bio Oce, NOAA NIUST, and NOAA OER for funding. W. Nelson acknowledges funding from NIWA SSIF Marine Biological Resources, School of Biological Sciences, University of Auckland, and NZ Ministry for Primary Industries Biodiversity Research Advisory Group. S. Fredericq greatly acknowledges financial support from NSF research grants DEB-0315995, DEB-1045690, DEB-1456674, DEB-1754504 and thanks the crew of the R/V Pelican for their help with sampling protocols aboard ship and her close research collaborators William Schmidt, Thomas Sauvage, Sherry Krayesky-Self, Joseph Richards, Olga Camacho, Natalia Arakaki, James Norris, Emma Hickerson and Darryl Felder. D. Ballantine acknowledges support by the NOAA Coastal Ocean Program under awards NA17OP2919 and NA06NOS4780190 to the University of Puerto Rico, Mayagüez. Our appreciation to Richard Pyle, Kimberly Puglise, Michael Graham, and two anonymous reviewers for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. Spalding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spalding, H.L. et al. (2019). Macroalgae. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_29

Download citation

Publish with us

Policies and ethics