Skip to main content

Abstract

Chapter 1 of this practical handbook describes the relationship between oxygen delivery, oxygen consumption, dysoxia, and various pathological conditions associated with the acid-base balance important for pediatric cardiac intensive care therapy.

Blood gas disorders occurring in pediatric intensive care medicine and their metabolic sequelae are discussed against the background of the complex interplay of oxygen binding, O2 consumption, and CO2 production and transport. Additionally, a description is given of the most accurate way possible to interpret laboratory findings in order to ultimately understand the clinical and therapeutic implications to be derived from the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of the tissue acids, usually only lactate is routinely determined quantitatively in clinical practice (ketones usually only qualitatively). Others remain unrecognized: unmeasured acids/anions. In the presence of tissue acids, a reduction in the (HCO3 ) concentration occurs initially (Fig. <InternalRef RefID="Fig15" >1.15</Internal Ref>, column e). If the acidosis persists for longer (hours to days), there is also a compensatory decrease in the [Cl–] concentration (Fig. <InternalRef RefID="Fig15" >1.15</Internal Ref>, column f) – even before iatrogenic Cl is supplied in the form of infusion solutions. Thus, acidosis with a decrease in the [Cl–]/[Na+] ratio highly probably indicates the presence of large quantities of tissue acids. By contrast, a [Cl]/[Na+] ratio > 0.85 excludes the presence of tissue acids as a cause of acidosis. If hyperchloremia and lactate are found, the situation is not so clear-cut. The [Cl]/[Na+] ratio is then between 0.72 and 0.8.

Suggested Reading

  1. Carlesso E, et al. The rule regulating pH changes during crystalloid infusion. Intensive Care Med. 2011;37:461–8.

    Article  CAS  Google Scholar 

  2. Constable PD. Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg. 2003;96:919–22.

    Article  CAS  Google Scholar 

  3. DuBose TD, Hamm LL, editors. Acid-base and electrolyte disorders: a companion to Brenner & Rector’s, the kidney. Philadelphia: Saunders; 2002.

    Google Scholar 

  4. Durward A. Modern acid base interpretation. STRS; 2009.

    Google Scholar 

  5. Durward A, et al. The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive Care Med. 2001;27:828–83.

    Article  CAS  Google Scholar 

  6. Eisenhut M. Causes and effects of hyperchloremic acidosis. Crit Care. 2006;10:143.

    Article  Google Scholar 

  7. Feld LG, Kaskel FJ, editors. Fluids and electrolytes in pediatrics: a comprehensive handbook. New York: Humana Press; 2010.

    Google Scholar 

  8. Foegel MA, editor. Ventricular function and blood flow in congenital heart disease. Philadelphia: Blackwell Futura; 2005.

    Google Scholar 

  9. Gabow PA, et al. Diagnostic importance of an increased serum anion gap. N Engl J Med. 1980;303:854–8.

    Article  CAS  Google Scholar 

  10. Gravenstein JS, Paulus DA, Hayes TJ, editors. Capnography in clinical practice. Stoneham: Butterworth Heinemann; 1988.

    Google Scholar 

  11. Kellum JA. Disorders of acid-ace-balance. Crit Care Med. 2007;35:2630–6.

    Article  Google Scholar 

  12. Kellum JA, Elbers PWG, editors. Steward’s textbook of acid-base. 2009. http://www.acidbase.org.

  13. Kiessling SG, Goebel J, Somers MJG, editors. Pediatric nephrology in the ICU. Berlin/Heidelberg: Springer; 2009.

    Google Scholar 

  14. Lumb AB, editor. Nunn’s applied respiratory physiology. 6th ed. Philadelphia: Butterworth Heinemann; 2005.

    Google Scholar 

  15. Morris CG, Low J. Metabolic acidosis in the critical ill: Part 1. Classification and pathophysiology. Anaesthesia l., The use of sodium-chloride difference and chloride-sodium-ratio as strong ion difference surrogates in the evaluation of metabolic acidosis in critically ill patients. J Crit Care. 2010;25:525–31.

    Article  Google Scholar 

  16. Orban JC, Leverve X, Ichai C. Lactate: métabolisme et physiopathologie. In: Ichai C, Quintard H, Orban JC, editors. Désordre métabolique et réanimation: de la physiopathologie au traitement. Berlin/Heidelberg: Springer; 2011. p. 181.

    Chapter  Google Scholar 

  17. Pinsky MR, et al., editors. Applied physiology in intensive care medicine. 2nd ed. Berlin/Heidelberg: Springer; 2009.

    Google Scholar 

  18. Rudolf AM. Congenital disease of the heart. Clinical physiological considerations. 3rd ed. West-Sussex: Wiley-Blackwell; 2009.

    Book  Google Scholar 

  19. Sheldon M. Chapter 61: Assessment of acid-base balance: a physical-chemical approach. In: Hamid Q, Shannon J, Martin J, editors. Physiologic basis of respiratory disease. Hamilton: B.C. Decker; 2005. p. 699–708.

    Google Scholar 

  20. Sibbald WJ, Messmer KFW, Fink MP, editors. Tissue oxygenation in acute medicine. Heidelberg: Springer; 2002.

    Google Scholar 

  21. Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand. 1995;39(Suppl 106):123–8.

    Article  Google Scholar 

  22. Vincent JL. Le manuel de reanimation, soins intensifs et medicine d’ urgence. 3e ed. France: Springer; 2009.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Neuhaeuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neuhaeuser, C., Klauwer, D. (2019). O2 Supply, CO2, and Acid-Base Balance. In: Klauwer, D., Neuhaeuser, C., Thul, J., Zimmermann, R. (eds) A Practical Handbook on Pediatric Cardiac Intensive Care Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-92441-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92441-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92440-3

  • Online ISBN: 978-3-319-92441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics