Skip to main content

The Girsanov Theorem Without (So Much) Stochastic Analysis

  • Chapter
  • First Online:
Séminaire de Probabilités XLIX

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2215))

  • 844 Accesses

Abstract

In this pedagogical note, we construct the semi-group associated to a stochastic differential equation with a constant diffusion and a Lipschitz drift by composing over small times the semi-groups generated respectively by the Brownian motion and the drift part. Similarly to the interpretation of the Feynman-Kac formula through the Trotter-Kato-Lie formula in which the exponential term appears naturally, we construct by doing so an approximation of the exponential weight of the Girsanov theorem. As this approach only relies on the basic properties of the Gaussian distribution, it provides an alternative explanation of the form of the Girsanov weights without referring to a change of measure nor on stochastic calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the original paper [9], the result is stated for 2−1∕2W and 21∕2b.

  2. 2.

    The norm of a matrix is \(\|a\|=\left (\sum _{i,j=1}^n |a_{i,j}^2|\right )^{1/2}\) while the norm of a vector is \(\|a\|=\left (\sum _{i=1}^n |a_i|{ }^2\right )^{1/2}\).

  3. 3.

    In the domain of SDE, among others, the Ninomiya-Victoir scheme [41] relies on an astute way to compose the operators.

  4. 4.

    In [31], R. Léandre gives an interpretation of the Girsanov formula and Malliavin calculus in terms of manipulation on semi-groups.

  5. 5.

    This is one of the central ideas of Malliavin calculus to express the expectation involving the derivative of a function as the expectation involving the function multiplied by a weight.

  6. 6.

    This is, X t(ω) = ω(t) when the probability space Ω is \(\mathrm {C}(\mathbb {R}_+,\mathbb {R})\).

  7. 7.

    These semi-groups are actually time-homogeneous. We however found it more convenient to keep the time dependence for our purpose.

  8. 8.

    These semi-groups satisfies the far more finer properties of being Feller, as for (X t)t≥0, but we do not use it here.

  9. 9.

    This condition is stronger than the one given in the original article of M. Kac on that subject.

References

  1. J. Akahori, T. Amaba, S. Uraguchi, An algebraic approach to the Cameron-Martin-Maruyama-Girsanov formula. Math. J. Okayama Univ. 55, 167–190 (2013)

    MathSciNet  MATH  Google Scholar 

  2. L. Ambrosio, D. Trevisan, Lecture notes on the DiPerna-Lions theory in abstract measure spaces (2015). arXiv: 1505.05292

    Google Scholar 

  3. R. Bafico, P. Baldi, Small random perturbations of Peano phenomena. Stochastics 6(3–4), 279–292 (1981/1982). https://doi.org/10.1080/17442508208833208

    Article  MathSciNet  Google Scholar 

  4. V. Bally, A. Kohatsu-Higa, A probabilistic interpretation of the parametrix method. Ann. Appl. Probab. 25(6), 3095–3138 (2015). https://doi.org/10.1214/14-AAP1068

    Article  MathSciNet  Google Scholar 

  5. V. Bally, C. Rey, Approximation of Markov semigroups in total variation distance. Electron. J. Probab. 21, 44 (2016). Paper No. 12. https://doi.org/10.1214/16-EJP4079

  6. D.R. Bell, The Malliavin Calculus. Pitman Monographs and Surveys in Pure and Applied Mathematics (Longman Scientific & Technical/Wiley, Harlow/New York, 1987)

    Google Scholar 

  7. A. Beskos, G.O. Roberts, Exact simulation of diffusions. Ann. Appl. Probab. 15(4), 2422–2444 (2005). https://doi.org/10.1214/105051605000000485

    Article  MathSciNet  Google Scholar 

  8. S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. Se MA 45, 89–145 (2008)

    Google Scholar 

  9. R.H. Cameron, W.T. Martin, Transformations of Wiener integrals under translations. Ann. Math. (2) 45, 386–396 (1944)

    Google Scholar 

  10. R.H. Cameron, W.T. Martin, Transformations of Wiener integrals under a general class of linear transformations. Trans. Am. Math. Soc. 58, 184–219 (1945)

    Article  MathSciNet  Google Scholar 

  11. R.H. Cameron, W.T. Martin, The transformation of Wiener integrals by nonlinear transformations. Trans. Am. Math. Soc. 66, 253–283 (1949). https://doi.org/10.109/S0002-9947-1949-0031196-6

    Article  MathSciNet  Google Scholar 

  12. P.R. Chernoff, Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators. Memoirs of the American Mathematical Society, vol. 140 (American Mathematical Society, Providence, 1974)

    Google Scholar 

  13. R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  14. C. Doléans-Dade, Quelques applications de la formule de changement de variables pour les semimartingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16, 181–194 (1970)

    Article  MathSciNet  Google Scholar 

  15. J.L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431–458 (1957)

    Article  MathSciNet  Google Scholar 

  16. D. Duffie, P. Protter, From discrete- to continuous-time finance: weak convergence of the financial gain process. J. Math. Finance 2, 1–15 (1992)

    Article  Google Scholar 

  17. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli, R. Schnaubelt (Springer, New York, 2000)

    Google Scholar 

  18. M. Erraoui, E.H. Essaky, Canonical representation for Gaussian processes, in Séminaire de Probabilités XLII. Lecture Notes in Mathematics, vol. 1979 (Springer, Berlin, 2009), pp. 365–381. https://doi.org/10.1007/978-3-642-01763-6_13.

  19. F. Flandoli, Remarks on uniqueness and strong solutions to deterministic and stochastic differential equations. Metrika 69(2–3), 101–123 (2009). https://doi.org/10.1007/s00184-008-0210-7

    Article  MathSciNet  Google Scholar 

  20. I.V. Girsanov, On transforming a class of stochastic processes by absolutely continuous substitution of measures. Theor. Probab. Appl. 5, 285–301 (1960). https://doi.org/10.1137/1105027

    Article  MathSciNet  Google Scholar 

  21. J.A. Goldstein, Remarks on the Feynman-Kac formula, in Partial Differential Equations and Dynamical Systems. Research Notes in Mathematics, vol. 101 (Pitman, Boston, 1984), pp. 164–180

    Google Scholar 

  22. H. Gzyl, The Feynman-Kac formula and the Hamilton-Jacobi equation. J. Math. Anal. Appl. 142(1), 74–82 (1989). https://doi.org/10.1016/0022-247X(89)90165-0

    Article  MathSciNet  Google Scholar 

  23. E. Hairer, C. Lubich, G. Wanner, Structure-preserving algorithms for ordinary differential equations, in Geometric Numerical Integration. Springer Series in Computational Mathematics, 2nd edn., vol. 31 (Springer, Berlin, 2006)

    Google Scholar 

  24. H. Hult, Approximating some Volterra type stochastic integrals with applications to parameter estimation. Stoch. Process. Appl. 105(1), 1–32 (2003). https://doi.org/10.1016/S0304-4149(02)00250-8

    Article  MathSciNet  Google Scholar 

  25. M. Jeanblanc, J. Pitman, M. Yor, The Feynman-Kac formula and decomposition of Brownian paths. Mat. Appl. Comput. 16(1), 27–52 (1997)

    MathSciNet  MATH  Google Scholar 

  26. M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets. Springer Finance (Springer, London, 2009). https://doi.org/10.1007/978-1-84628-737-4

    Book  Google Scholar 

  27. M. Kac, On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MathSciNet  Google Scholar 

  28. T. Kato, Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups, in Topics in Functional Analysis (Essays Dedicated to M. G. Kreı̆n on the Occasion of his 70th Birthday). Advances in Mathematics Supplied Studies, vol. 3 (Academic, New York, 1978), pp. 185–195

    Google Scholar 

  29. A. Kohatsu-Higa, A. Lejay, K. Yasuda, Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift. J. Comput. Appl. Math. 326C, 138–158 (2017). https://doi.org/10.1016/j.cam.2017.05.015

    Article  MathSciNet  Google Scholar 

  30. T.G. Kurtz, P.E. Protter, Weak convergence of stochastic integrals and differential equations, in Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Mathematics, vol. 1627 (Springer, Berlin, 1996), pp. 1–41. https://doi.org/10.1007/BFb0093176

  31. R. Leandre, Applications of the Malliavin calculus of Bismut type without probability. WSEAS Trans. Math. 5(11), 1205–1210 (2006)

    MathSciNet  MATH  Google Scholar 

  32. S. Lie, F. Engel, Theorie der Transformationsgruppen (Teubner, Leipzig, 1888)

    Google Scholar 

  33. R.S. Liptser, A.N. Shiryaev, Statistics of Random Processes. I. General Theory. Applications of Mathematics (New York), 2nd edn., vol. 5 (Springer, Berlin, 2001). Translated from the 1974 Russian original by A.B. Aries. https://doi.org/10.1007/978-3-662-13043-8

  34. R.S. Liptser, A.N. Shiryaev, Statistics of Random Processes. II. Applications. Applications of Mathematics (New York), 2nd edn., vol. 6 (Springer, Berlin, 2001). Translated from the 1974 Russian original by A. B. Aries. https://doi.org/10.1007/978-3-662-10028-8

  35. B. Maisonneuve, Quelques martingales remarquables associées à une martingale continue. Publ. Inst. Statist. Univ. Paris 17.fasc. 3, 13–27 (1968)

    Google Scholar 

  36. P. Malliavin, Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 313 (Springer, Berlin, 1997). https://doi.org/10.1007/978-3-642-15074-6

  37. G. Maruyama, On the transition probability functions of the Markov process. Nat. Sci. Rep. Ochanomizu Univ. 5, 10–20 (1954)

    MathSciNet  MATH  Google Scholar 

  38. R. Mikulevičius, E. Platen, Rate of convergence of the Euler approximation for diffusion processes. Math. Nachr. 151, 233–239 (1991). https://doi.org/10.1002/mana.19911510114

    Article  MathSciNet  Google Scholar 

  39. R. Mikulevičius, C. Zhang, Weak Euler approximation for Itô diffusion and jump processes. Stoch. Anal. Appl. 33(3), 549–571 (2015). https://doi.org/10.1080/07362994.2015.1014102

    Article  MathSciNet  Google Scholar 

  40. E. Nelson, Feynman integrals and the Schrödinger equation. J. Math. Phys. 5, 332–343 (1964)

    Article  Google Scholar 

  41. S. Ninomiya, N. Victoir, Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Finance 15(1–2), 107–121 (2008). https://doi.org/1.108/13504860701413958

    Article  MathSciNet  Google Scholar 

  42. S. Orey, Conditions for the absolute continuity of two diffusions. Trans. Am. Math. Soc. 193, 413–426 (1974)

    Article  MathSciNet  Google Scholar 

  43. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44 (Springer, New York, 1983). https://doi.org/10.1007/978-1-4612-5561-1

  44. B. Roynette, M. Yor, Penalising Brownian Paths. Lecture Notes in Mathematics, vol. 1969 (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-89699-9

  45. B. Simon, Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982). https://doi.org/10.1090/S0273-0979-1982-15041-8

  46. A.V. Skorohod, On the densities of probability measures in functional spaces, in Proceedings of. Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1965/1966) (University of California Press, Berkeley, 1967); vol. II: Contributions to Probability Theory, Part 1

    Google Scholar 

  47. D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes. Classics in Mathematics (Springer, Berlin, 2006). Reprint of the 1997 edn.

    Google Scholar 

  48. S. Takanobu, On the error estimate of the integral kernel for the Trotter product formula for Schrödinger operators. Ann. Probab. 25(4), 1895–1952 (1997). https://doi.org/10.1214/aop/1023481116

    Article  MathSciNet  Google Scholar 

  49. D. Talay, Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution. RAIRO Modél. Math. Anal. Numér. 20(1), 141–179 (1986)

    Article  MathSciNet  Google Scholar 

  50. H.F. Trotter, On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  Google Scholar 

  51. J. H. Van Schuppen, E. Wong, Transformation of local martingales under a change of law. Ann. Probab. 2, 879–888 (1974)

    Article  MathSciNet  Google Scholar 

  52. A.J. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR Sb. 39(3), 387–403 (1981). https://doi.org/10.1070/SM1981v039n03ABEH001522

    Article  Google Scholar 

  53. A. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift. Math. USSR Sb. 22, 129–149 (1975). https://doi.org/10.1070/SM1974v022n01ABEH001689

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank K. Coulibaly-Pasquier, V. Bally and A. Kohatsu-Higa for some motivating and interesting discussions on this approach. This article is a follow-up of a talk given at the “groupe de travail” of the Probability and Statistics teams of Institut Élie Cartan de Lorraine (Nancy) on the link between the Trotter-Kato-Lie and the Feynman-Kac formula, and I am grateful to the audience for his/her patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Lejay .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Almost Sure Convergence of the Euler Scheme

The convergence property (8.20) of the Euler scheme follows from the recursive inequality

$$\displaystyle \begin{aligned} |\xi_{i+1}(x)-\mathbb{X}_{t_{i+1},0}(x)| &\leq |\xi_{i}(x)-\mathbb{X}_{t_{i},0}(x)| +\rho_i+\frac{T}{n}|b(\xi_i(x))-b(\mathbb{X}_{t_i,0}(x))|\\ &\leq \exp\left(T\|\nabla b\|{}_{\infty}\right)\sum_{j=1}^i \rho_j \end{aligned} $$
(8.36)

with

$$\displaystyle \begin{aligned} \rho_i=\int_{t_i}^{t_{i+1}} |b(\mathbb{X}_{r,0}(x))-b(\mathbb{X}_{t_i,0}(x))|\,\mathrm{d} r \leq \frac{T}{n}\|\nabla b\|{}_{\infty}\sup_{r\in[t_i,t_{i+1}]}|\mathbb{X}_{r,0}(x)-\mathbb{X}_{t_i,0}(x)|. \end{aligned}$$

For this, we have used the fact that b is Lipschitz continuous and \(1+\frac {T}{n}\|\nabla b\|{ }_{\infty }\leq \exp (T\|\nabla b\|{ }_{\infty }/n)\).

It can be proved that similarly to the Brownian path, each path of \(\mathbb {X}_{t,0}(x)\) is α-Hölder continuous for any α < 1∕2. This is a direct consequence of the Kolmogorov lemma on the regularity of stochastic processes. This proves that the right hand side of (8.36) converges to 0 at rate α < 1∕2.

Appendix 2: The Heat and the Transport Semi-group

The underlying Banach space is \(\mathrm {B}=\mathrm {C}_{\mathrm {z}}(\mathbb {R}^d,\mathbb {R})\), the space of continuous, bounded functions that vanish at infinity. The norm on B is \(\|f\|=\sup _{x\in \mathbb {R}^d} |f(x)|\).

The Heat Semi-group

The heat semi-group is

$$\displaystyle \begin{aligned} P_{t}f(x)=\int \frac{1}{(2\pi t)^{d/2}}\exp\left(\frac{-|x-y|{}^2}{2t}\right)f(y)\,\mathrm{d} y \end{aligned}$$

for a measurable function g which is bounded or in \(\mathrm {L}^2(\mathbb {R}^d)\), the space of square integrable functions.

Since the marginal distribution of the Brownian motion B at any time t is normal one with mean 0 and variance t, \(P_tf(x)=\mathbb {E}[f(x+B_t)]\).

Using Fourier transform or computing derivatives,

$$\displaystyle \begin{aligned} \partial_t P_t f(x)=\frac{1}{2}\triangle P_t f(x),\ x\in\mathbb{R}^d,\ t>0. \end{aligned}$$

Multiplying the above equation by \(g(x)\in \mathrm {C}_{\mathrm {c}}^2(\mathbb {R}^d,\mathbb {R})\), performing an integration by parts then integrating between 0 and t lead to

$$\displaystyle \begin{aligned} \int_{\mathbb{R}^d} (P_tg(x)-g(x))f(x)\,\mathrm{d} x=\frac{1}{2}\int_0^t \int_{\mathbb{R}^d} P_tf(x)\triangle g(x)\,\mathrm{d} x. \end{aligned}$$

Then, passing to the limit and since f is freely chosen,

$$\displaystyle \begin{aligned} \lim_{t\to 0} \frac{P_tg(x)-g(x)}{t}=\frac{1}{2}\triangle g(x), \ \forall x\in\mathbb{R}^d,\ g\in\mathrm{C}_{\mathrm{c}}^2(\mathbb{R}^d,\mathbb{R}). \end{aligned} $$
(8.37)

Thus, if \((\mathfrak {L}, \operatorname {\mathrm {Dom}}(\mathfrak {L}))\) is the infinitesimal generator of (P t)t≥0 (this is necessarily a close operator), \(\mathfrak {L}=\frac {1}{2}\triangle \) on \(\mathbb {C}_{\mathrm {c}}^2(\mathbb {R}^d,\mathbb {R})\subset\operatorname {\mathrm {Dom}}(\mathfrak {L})\). The latter space being dense in the underlying space \(\mathrm {C}_{\mathrm {z}}(\mathbb {R}^d,\mathbb {R})\) with respect to ∥⋅∥ and \( \operatorname {\mathrm {Dom}}(\mathfrak {L})\) with respect to the graph norm \(\|\cdot \|{ }_{\infty }+\|\mathfrak {L}\cdot \|{ }_{\infty }\), (8.37) characterizes \((\mathfrak {L}, \operatorname {\mathrm {Dom}}(\mathfrak {L}))\) when \(\mathrm {C}_{\mathrm {z}}(\mathbb {R}^d,\mathbb {R})\) is the ambient Banach space.

In other words, we recover that the infinitesimal generator of the Brownian motion is \(\mathfrak {L}=\frac {1}{2}\triangle \) with a suitable domain. This could of course be easily obtained from the Itô’s formula. Also, we see the link between the heat equation (8.10), the Brownian motion and the heat semi-group.

The Transport Semi-group

Let us consider now the flow \((\mathbb {Y}_t)\). Since \(\mathbb {Y}(x)\) is solution to \(\mathbb {Y}_t(x)=x+\int _0^t b(\mathbb {Y}_s(x))\,\mathrm {d} s\), the Newton formula for \(f\in \mathrm {C}_{\mathrm {c}}^1(\mathbb {R}^d,\mathbb {R})\) implies that

$$\displaystyle \begin{aligned} f(\mathbb{Y}_t(x))-f(x)=\int_0^t b(\mathbb{Y}_s(x))\nabla f(\mathbb{Y}_s(s))\,\mathrm{d} s. \end{aligned}$$

Hence, the infinitesimal generator of (Q t)t≥0 is \(\mathfrak {B}=b\nabla \cdot \) whose domain \( \operatorname {\mathrm {Dom}}(\mathfrak {B})\) is the closure of \(\mathrm {C}_{\mathrm {c}}^1(\mathbb {R}^d,\mathbb {R})\) to the graph norm (see e.g. [17, § II.3.28, p. 91]).

The semi-group (Q t)t>0 is also linked to a PDE, called the transport equation. We have seen in Proposition 8.2 that \(x\mapsto \mathbb {Y}_t(x)\) is differentiable. It is actually of class \(\mathrm {C}^1(\mathbb {R}^d,\mathbb {R})\). Thus, \(Q_t f(x)=f\circ \mathbb {Y}_t(x)\) is also differentiable. Applying the Newton formula to \(f\circ \mathbb {Y}_t=Q_t f\) and using the flow property of \(\mathbb {Y}_t\) leads to

$$\displaystyle \begin{aligned} f(\mathbb{Y}_{t+\epsilon}(x))-f(\mathbb{Y}_t(x))=Q_t f(\mathbb{Y}_\epsilon(x))-Q_t f(x) =\int_0^{\epsilon} b(\mathbb{Y}_s(x))\nabla Q_t f(\mathbb{Y}_s(x))\,\mathrm{d} s. \end{aligned}$$

Dividing each side by 𝜖 and passing to the limit implies that

$$\displaystyle \begin{aligned} \partial_t Q_t f(x)=b(x)\nabla Q_t f(x). \end{aligned}$$

Conversely, it is also possible to start from the transport equation tu(t, x) = b(x)∇u(t, x) to construct the flow \(\mathbb {Y}\) through the so-called method of characteristics, that is to find the paths \(\mathbb {Z}:\mathbb {R}_+\to \mathbb {R}^d\) such that \(u(t,\mathbb {Z}_t)\) is constant over the time t.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lejay, A. (2018). The Girsanov Theorem Without (So Much) Stochastic Analysis. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLIX. Lecture Notes in Mathematics(), vol 2215. Springer, Cham. https://doi.org/10.1007/978-3-319-92420-5_8

Download citation

Publish with us

Policies and ethics