Skip to main content

CAR-T Cell Immune Therapy: Engineering T Cells to Treat Cancer

  • Chapter
  • First Online:
Biotechnology Products in Everyday Life

Part of the book series: EcoProduction ((ECOPROD))

  • 862 Accesses

Abstract

Immunotherapy is a combination of therapeutic strategies that make use of a patient’s immune system to confront tumors. Over the past few years, immunotherapy has evolved as a crucial therapeutic program to manage some types of cancer. Our immune system is a collection of cells and tissues which perform the specialized function of defending our body against foreign pathogens. Although our immune system is designed to combat foreign agents that pose a threat, it often fails to detect and eradicate tumor cells because tumor cells have evolved complex genetic adaptive mechanisms that help them evade the immune surveillance program. In order to overcome this obstacle and in order to improve tumor cell detection and eradication by the immune system, researchers have developed a novel therapeutic treatment strategy called chimeric antigen receptor T cell therapy (CAR-T cell therapy). T cells are immune cells that play a key role in shielding our body against foreign pathogens by mounting a potent immune response that ultimately eradicates abnormal cells. In brief, CAR-T cell therapy involves the isolation of T cells from patient blood, genetically altering the T cells to express receptors on their surface that specifically can bind to antigens present on the tumor cell, proliferating them in the laboratory to make millions of cells and finally, injecting back into the patient. T cells genetically manipulated in this manner harbor the capacity of multiplying inside the patient’s body and can also eradicate tumor cells that express surface antigens specifically recognized by the engineered receptor. It took researchers all around the globe several years of research to have CAR-T cell therapy approved in August 2017 for the treatment of children with acute lymphoblastic leukemia (ALL). So far, CAR-T cell therapy has shown extremely promising results in patient populations, especially for patients who have developed chemo-resistance. The scope of this chapter is to provide a broad and general idea about all the different aspects of CAR-T cell therapy that are essential for the application of this therapeutic strategy to combat cancer. Some of these key features include selection of a specific tumor antigen to target, developing a strong co-stimulatory signaling strategy to elicit a potent immune response, enhancing the migratory properties of CAR-T cells so that they can localize to tumor sites, and finally, engineering T cells in a manner so that they can effectively proliferate and eliminate tumor cells. In conclusion, CAR-T cells hold tremendous potential for the treatment of cancer and have shown promising results in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eshhar, Z.: Cancer Immunol. Immunother.: CII 45, 131–136 (1997)

    Google Scholar 

  2. (a) Hicklin, D.J., Marincola, F.M., Ferrone, S.: HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol. Med. Today 5, 178–186 (1999); (b) Rivoltini, L., Carrabba, M., Huber, V., Castelli, C., Novellino, L., Dalerba, P., Mortarini, R., Arancia, G., Anichini, A., Fais, S., Parmiani, G.: Immunity to cancer: attack and escape in T lymphocyte–tumor cell interaction. Immunol. Rev. 188, 97–113 (2002)

    Google Scholar 

  3. (a) Sadelain, M., Riviere, I., Brentjens, R.: Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer 3, 35–45 (2003); (b) Bridgeman, J.S., Hawkins, R.E., Hombach, A.A., Abken, H., Gilham, D.E.: Building better chimeric antigen receptors for adoptive T cell therapy. Curr. Gene Ther. 10, 77–90 (2010)

    Google Scholar 

  4. (a) Niederman, T.M., Ghogawala, Z., Carter, B.S., Tompkins, H.S., Russell, M.M., Mulligan, R.C.: Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc. Natl. Acad. Sci. U.S.A. 99, 7009–7014 (2002); (b) Pameijer, C.R., Navanjo, A., Meechoovet, B., Wagner, J.R., Aguilar, B., Wright, C.L., Chang, W.C., Brown, C.E., Jensen, M.C.: Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor. Cancer Gene Ther. 14, 91–97 (2007); (c) Stastny, M.J., Brown, C.E., Ruel, C., Jensen, M.C.: Medulloblastomas expressing IL13Rα2 are targets for IL13-zetakine + Cytolytic T cells. J. Pediatr. Hematol./Oncol. 29, 669–677 (2007); (d) Kahlon, K.S., Brown, C., Cooper, L.J., Raubitschek, A., Forman, S.J., Jensen, M.C.: Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 64, 9160–9166 (2004); (e) Muniappan, A., Banapour, B., Lebkowski, J., Talib, S.: Ligand-mediated cytolysis of tumor cells: use of heregulin-ζ chimeras to redirect cytotoxic T lymphocytes. Cancer Gene Ther. 7, 128–134 (2000); (f) Zhang, T., Lemoi, B.A., Sentman, C.L.: Chimeric NK-receptor–bearing T cells mediate antitumor immunotherapy. Blood 106, 1544–1551 (2005); (g) Zhang T., Barber, A., Sentman, C.L.: Chimeric NK-receptor–bearing T cells mediate antitumor immunotherapy. Cancer Res. 67, 11029–11036 (2007); (h) Barber, A., Zhang, T., Sentman, C.L.: Immunotherapy with Chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. J. Immunol. 180, 72–78 (2008)

    Google Scholar 

  5. (a) Moritz, D., Groner, B.: A spacer region between the single chain antibody-and the CD3 zeta-chain domain of chimeric T cell receptor components is required for efficient ligand binding and signaling activity. Gene Ther. 2, 539–546 (1995); (b) Wilkie, S., Picco, G., Foster, J., Davies, D.M., Julien, S., Cooper, L., Arif, S., Mather, S.J., Taylor-Papadimitriou, J., Burchell, J.M., Maher, J.: Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J. Immunol. 180, 4901–4909 (2008); (c) Hombach, A., Hombach, A.A., Abken, H.: Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther. 17, 1206–1213 (2010); (d) Kradin, R., Kurnick, J., Gifford, J., Pinto, C., Preffer, F., Lazarus, D.: Adoptive immunotherapy with interleukin-2 (IL-2) results in diminished IL-2 production by stimulated peripheral blood lymphocytes. J. Clin. Immunol. 9, 378–385 (1989)

    Google Scholar 

  6. (a) Milone, M.C., Fish, J.D., Carpenito, C., Carroll, R.G., Binder, G.K., Teachey, D., Samanta, M., Lakhal, M., Gloss, B., Danet-Desnoyers, G., Campana, D., Riley, J.L., Grupp, S.A., June, C.H.: Mol. Ther.: Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. J. Am. Soc. Gene Ther. 17, 1453–1464 (2009); (b) Hombach, A.A., Heiders, J., Foppe, M., Chmielewski, M., Abken, H.: OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology 1, 458–466 (2012); (c) Song, D.G., Ye, Q., Carpenito, C., Poussin, M., Wang, L.P., Ji, C., Figini, M., June, C.H., Coukos, G., Powell, D.J., Jr.: In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71, 4617–4627 (2011); (d) Tammana, S., Huang, X., Wong, M., Milone, M.C., Ma, L., Levine, B.L., June, C.H., Wagner, J.E., Blazar, B.R., Zhou, X.: 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Human Gene Ther. 21, 75–86 (2010); (e) Pule, M.A., Straathof, K.C., Dotti, G., Heslop, H.E., Rooney, C.M., Brenner, M.K.: Mol. Ther.: A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. J. Am. Soc. Gene Ther. 12, 933–941 (2005)

    Google Scholar 

  7. Irving, B.A., Weiss, A.: The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991)

    Article  CAS  Google Scholar 

  8. (a) Letourneur, F., Klausner, R.D.: T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc. Natl. Acad. Sci. U. S. A. 88, 8905–8909 (1991); (b) Romeo, C., Amiot, M., Seed, B.: Sequence requirements for induction of cytolysis by the T cell antigenFc receptor ζ chain. Cell 68, 889–897 (1992)

    Google Scholar 

  9. (a) Zhong, X.S., Matsushita, M., Plotkin, J., Riviere, I., Sadelain, M.: Mol. Ther.: Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8 + T cell–mediated tumor eradication. J. Am. Soc. Gene Ther. 18, 413–420 (2010); (b) Wang, L.X., Westwood, J.A., Moeller, M., Duong, C.P., Wei, W.Z., Malaterre, J., Trapani, J.A., Neeson, P., Smyth, M.J., Kershaw, M.H., Darcy, P.K.: Cancer Res. 70, 9591–9598 (2010); (c) Carpenito, C., Milone, M.C., Hassan, R., Simonet, J.C., Lakhal, M., Suhoski, M.M., Varela-Rohena, A., Haines, K.M., Heitjan, D.F., Albelda, S.M., Carroll, R.G., Riley, J.L., Pastan, I., June, C.H.: Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. U. S. A. 106, 3360–3365 (2009)

    Google Scholar 

  10. (a) Imai, C., Mihara, K., Andreansky, M., Nicholson, I.C., Pui, C.H., Geiger, T.L., Campana, D.: Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004); (b) Maher, J., Brentjens, R.J., Gunset, G., Riviere, I., Sadelain, M.: Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002); (c) Kowolik, C.M., Topp, M.S., Gonzalez, S., Pfeiffer, T., Olivares, S., Gonzalez, N., Smith, D.D., Forman, S.J., Jensen, M.C., Cooper, L.J.: CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66, 10995–11004 (2006); (d) Finney, H.M., Akbar, A.N., Lawson, A.D.: Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J. Immunol. 172, 104–113 (2004); (e) Song, D.G., Ye, Q., Poussin, M., Harms, G.M., Figini, M., Powell, D.J., Jr.: CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119, 696–706 (2012); (f) Altvater, B., Landmeier, S., Pscherer, S., Temme, J., Juergens, H., Pule, M., Rossig, C.: Cancer Immunol. Immunother.: CII 58, 1991–2001 (2009)

    Google Scholar 

  11. (a) Pinthus, J.H., Waks, T., Kaufman-Francis, K., Schindler, D.G., Harmelin, A., Kanety, H., Ramon, J., Eshhar, Z.: Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes. Cancer Res. 63, 2470–2476 (2003); (b) Teng, M.W., Kershaw, M.H., Moeller, M., Smyth, M.J., Darcy, P.K.: Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Human Gene Ther. 15, 699–708 (2004); (c) Gong, M.C., Latouche, J.B., Krause, A., Heston, W.D., Bander, N.H., Sadelain, M.: Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1, 123–127 (1999); (d) Weijtens, M.E., Willemsen, R.A., van Krimpen, B.A., Bolhuis, R.L.: Chimeric scFv/γ receptor‐mediated T‐cell lysis of tumor cells is coregulated by adhesion and accessory molecules. Int. J. Cancer 77, 181–187 (1998); (e) Lamers, C.H., Sleijfer, S., Vulto, A.G., Kruit, W.H., Kliffen, M., Debets, R., Gratama, J.W., Stoter, G., Oosterwijk, E.: Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol.: Official J. Am. Soc. Clin. Oncol. 24, e20–22 (2006); (f) Mezzanzanica, D., Canevari, S., Mazzoni, A., Figini, M., Colnaghi, M.I., Waks, T., Schindler, D.G., Eshhar, Z.: Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther. 5, 401–407 (1998); (g) Westwood, J.A., Smyth, M.J., Teng, M.W., Moeller, M., Trapani, J.A., Scott, A.M., Smyth, F.E., Cartwright, G.A., Power, B.E., Honemann, D., Prince, H.M., Darcy, P.K., Kershaw, M.H.: Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc. Natl. Acad. Sci. U. S. Am. 102, 19051–19056 (2005); (h) Darcy, P.K., Kershaw, M.H., Trapani, J.A., Smyth, M.J.: Expression in cytotoxic T lymphocytes of a single‐chain anti‐carcinoembryonic antigen antibody. Redirected fas ligand‐mediated lysis of colon carcinoma. Eur. J. Immunol. 28, 1663–1672 (1998); (i) Haynes, N.M., Trapani, J.A., Teng, M.W., Jackson, J.T., Cerruti, L., Jane, S.M., Kershaw, M.H., Smyth, M.J., Darcy, P.K.: Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J. Immunol. 169, 5780–5786 (2002); (j) Hwu, P., Shafer, G.E., Treisman, J., Schindler, D.G., Gross, G., Cowherd, R., Rosenberg, S.A., Eshhar, Z.: Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J. Exp. Med. 178, 361–366 (1993); (k) Chekmasova, A.A., Rao, T.D., Nikhamin, Y., Park, K.J., Levine, D.A., Spriggs, D.R., Brentjens, R.J.: Clin. Cancer Res.: Official J. Am. Assoc. Cancer Res. 16, 3594–3606 (2010); (l) Rossig, C., Bollard, C.M., Nuchtern, J.G., Rooney, C.M., Brenner, M.K.: Epstein-Barr virus–specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 99, 2009–2016 (2002)

    Google Scholar 

  12. Petrausch, U., Jensen, S.M., Twitty, C., Poehlein, C.H., Haley, D.P., Walker, E.B., Fox, B.A.: Disruption of TGF-β signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. J. Immunol. 183, 3682–3689 (2009)

    Article  CAS  Google Scholar 

  13. (a) Foster, A.E., Dotti, G., Lu, A., Khalil, M., Brenner, M.K., Heslop, H.E., Rooney, C.M., Bollard, C.M.: Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother. 31, 500–505 (2008); (b) Bollard, C.M., Rossig, C., Calonge, M.J., Huls, M.H., Wagner, H.J., Massague, J., Brenner, M.K., Heslop, H.E., Rooney, C.M.: Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood 99, 3179–3187 (2002)

    Google Scholar 

  14. Eshhar, Z., Waks, T., Gross, G., Schindler, D.G.: Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. U. S. A. 90, 720–724 (1993)

    Article  CAS  Google Scholar 

  15. (a) Heuser, C., Hombach, A., Losch, C., Manista, K., Abken, H.: T-cell activation by recombinant immunoreceptors: impact of the intracellular signalling domain on the stability of receptor expression and antigen-specific activation of grafted T cells. Gene Ther. 10, 1408–1419 (2003); (b) Haynes, N.M., Snook, M.B., Trapani, J.A., Cerruti, L., Jane, S.M., Smyth, M.J., Darcy, P.K.: Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-ζ vs FcεRI-γ. J. Immunol. 166, 182–187 (2001)

    Google Scholar 

  16. (a) Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H., Allison, J.P.: CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992); (b) Lenschow, D.J., Walunas, T.L., Bluestone, J.A.: CD28/B7 system of T cell costimulation. Ann. Rev. Immunol. 14, 233–258 (1996)

    Google Scholar 

  17. (a) Smith-Garvin, J.E., Koretzky, G.A., Jordan, M.S.: T cell activation. Ann. Rev. Immunol. 27, 591–619 (2009); (b) Chambers, C.A., Allison, J.P.: Costimulatory regulation of T cell function. Curr. Opin. Cell Biol. 11, 203–210 (1999)

    Google Scholar 

  18. (a) Bretscher, P., Cohn, M.: A theory of self-nonself discrimination: paralysis and induction involve the recognition of one and two determinants on an antigen, respectively. Science 169, 1042–1049 (1970); (b) Bretscher, P.A.: A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl. Acad. Sci. U. S. A. 96, 185–190 (1999)

    Google Scholar 

  19. (a) Beecham, E.J., Ma, Q., Ripley, R., Junghans, R.P.: Coupling CD28 co-stimulation to immunoglobulin T-cell receptor molecules: the dynamics of T-cell proliferation and death. J. Immunother. 23, 631–642 (2000); (b) Hombach, A., Sent, D., Schneider, C., Heuser, C., Koch, D., Pohl, C., Seliger, B., Abken, H.: T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res. 61, 1976–1982 (2001); (c) Hombach, A., Wieczarkowiecz, A., Marquardt, T., Heuser, C., Usai, L., Pohl, C., Seliger, B., Abken, H.: Tumor-specific T cell activation by recombinant immunoreceptors: CD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3ζ signaling receptor molecule. J. Immunol. 167, 6123–6131 (2001); (d) Vera, J., Savoldo, B., Vigouroux, S., Biagi, E., Pule, M., Rossig, C., Wu, J., Heslop, H.E., Rooney, C.M., Brenner, M.K., Dotti, G.: T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108, 3890–3897 (2006)

    Google Scholar 

  20. (a) Brentjens, R.J., Latouche, J.B., Santos, E., Marti, F., Gong, M.C., Lyddane, C., King, P.D., Larson, S., Weiss, M., Riviere, I., Sadelain, M.: Nat. Med. 9, 279–286 (2003); (b) Gilham, D.E., O’Neil, A., Hughes, C., Guest, R.D., Kirillova, N., Lehane, M., Hawkins, R.E.: J. Immunother. 25, 139–151 (2002); (c) Stancovski, I., Schindler, D.G., Waks, T., Yarden, Y., Sela, M., Eshhar, Z.: J. Immunol. 151, 6577–6582 (1993)

    Google Scholar 

  21. Santos, E.B., Yeh, R., Lee, J., Nikhamin, Y., Punzalan, B., La Perle, K., Larson, S.M., Sadelain, M., Brentjens, R.J.: Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat. Med. 15, 338–344 (2009)

    Article  CAS  Google Scholar 

  22. Savoldo, B., Ramos, C.A., Liu, E., Mims, M.P., Keating, M.J., Carrum, G., Kamble, R.T., Bollard, C.M., Gee, A.P., Mei, Z., Liu, H., Grilley, B., Rooney, C.M., Heslop, H.E., Brenner, M.K., Dotti, G.: CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011)

    Article  CAS  Google Scholar 

  23. (a) Brentjens, R.J., Riviere, I., Park, J.H., Davila, M.L., Wang, X., Stefanski, J., Taylor, C., Yeh, R., Bartido, S., Borquez-Ojeda, O., Olszewska, M., Bernal, Y., Pegram, H., Przybylowski, M., Hollyman, D., Usachenko, Y., Pirraglia, D., Hosey, J., Santos, E., Halton, E., Maslak, P., Scheinberg, D., Jurcic, J., Heaney, M., Heller, G., Frattini, M., Sadelain, M.: Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011); (b) Kalos, M., Levine, B.L., Porter, D.L., Katz, S., Grupp, S.A., Bagg, A., June, C.H.: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011)

    Google Scholar 

  24. (a) Kershaw, M.H., Wang, G., Westwood, J.A., Pachynski, R.K., Tiffany, H.L., Marincola, F.M., Wang, E., Young, H.A., Murphy, P.M., Hwu, P.: Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Human Gene Ther. 13, 1971–1980 (2002); (b) Di Stasi, A., De Angelis, B., Rooney, C.M., Zhang, L., Mahendravada, A., Foster, A.E., Heslop, H.E., Brenner, M.K., Dotti, G., Savoldo, B.: T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402 (2009)

    Google Scholar 

  25. Kochenderfer, J.N., Wilson, W.H., Janik, J.E., Dudley, M.E., Stetler-Stevenson, M., Feldman, S.A., Maric, I., Raffeld, M., Nathan, D.A., Lanier, B.J., Morgan, R.A., Rosenberg, S.A.: Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010)

    Article  CAS  Google Scholar 

  26. (a) Schreiber, R.D., Old, L.J., Smyth, M.J.: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011); (b) Rabinovich, G.A., Gabrilovich, D., Sotomayor, E.M.: Immunosuppressive strategies that are mediated by tumor cells. Ann. Rev. Immunol. 25, 267–296 (2007)

    Google Scholar 

  27. (a) Park, J.R., Digiusto, D.L., Slovak, M., Wright, C., Naranjo, A., Wagner, J., Meechoovet, H.B., Bautista, C., Chang, W.C., Ostberg, J.R., Jensen, M.C.: Mol. Ther.: Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. J. Am. Soc. Gene Ther. 15, 825–833 (2007); (b) Till, B.G., Jensen, M.C., Wang, J., Chen, E.Y., Wood, B.L., Greisman, H.A., Qian, X., James, S.E., Raubitschek, A., Forman, S.J., Gopal, A.K., Pagel, J.M., Lindgren, C.G., Greenberg, P.D., Riddell, S.R., Press, O.W.: Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008); (c) Kershaw, M.H., Westwood, J.A., Parker, L.L., Wang, G., Eshhar, Z., Mavroukakis, S.A., White, D.E., Wunderlich, J.R., Canevari, S., Rogers-Freezer, L., Chen, C.C., Yang, J.C., Rosenberg, S.A., Hwu, P.: A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res.: Official J. Am. Assoc. Cancer Res. 12, 6106–6115 (2006)

    Google Scholar 

  28. (a) Louis, C.U., Savoldo, B., Dotti, G., Pule, M., Yvon, E., Myers, G.D., Rossig, C., Russell, H.V., Diouf, O., Liu, E., Liu, H., Wu, M.F., Gee, A.P., Mei, Z., Rooney, C.M., Heslop, H.E., Brenner, M.K.: Anti-tumor activity and long-term fate of chimeric antigen receptor positive T-cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011); (b) Pule, M.A., Savoldo, B., Myers, G.D., Rossig, C., Russell, H.V., Dotti, G., Huls, M.H., Liu, E., Gee, A.P., Mei, Z., Yvon, E., Weiss, H.L., Liu, H., Rooney, C.M., Heslop, H.E., Brenner, M.K.: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008); (c) Lamers, C.H., Willemsen, R., van Elzakker, P., van Steenbergen-Langeveld, S., Broertjes, M., Oosterwijk-Wakka, J., Oosterwijk, E., Sleijfer, S., Debets, R., Gratama, J.W.: Blood 117, 72–82 (2011); (d) Jensen, M.C., Popplewell, L., Cooper, L.J., DiGiusto, D., Kalos, M., Ostberg, J.R., Forman, S.J.: Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant.: J. Am. Soc. Blood Marrow Transplant. 16, 1245–1256 (2010)

    Google Scholar 

  29. Morgan, R.A., Yang, J.C., Kitano, M., Dudley, M.E., Laurencot, C.M., Rosenberg, S.A.: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular therapy: the journal of the American Society of Gene Therapy 18, 843–851 (2010)

    Article  CAS  Google Scholar 

  30. (a) Hollyman, D., Stefanski, J., Przybylowski, M., Bartido, S., Borquez-Ojeda, O., Taylor, C., Yeh, R., Capacio, V., Olszewska, M., Hosey, J., Sadelain, M., Brentjens, R.J., Riviere, I.: Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother 32, 169–180 (2009); (b) June, C.H.: Adoptive T cell therapy for cancer in the clinic. J. Clin. Investig. 117, 1466–1476 (2007)

    Google Scholar 

  31. (a) Seliger, B.: Different regulation of MHC class I antigen processing components in human tumors. J. Immunotoxicol. 5, 361–367 (2008); (b) Kerkar, S.P., Muranski, P., Kaiser, A., Boni, A., Sanchez-Perez, L., Yu, Z., Palmer, D.C., Reger, R.N., Borman, Z.A., Zhang, L., Morgan, R.A., Gattinoni, L., Rosenberg, S.A., Trinchieri, G., Restifo, N.P.: Tumor-specific CD8 + T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 70, 6725–6734 (2010)

    Google Scholar 

  32. (a) Casucci, M., Hawkins, R.E., Dotti, G., Bondanza, A.: Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol. Immunother. CII 64, 123–130 (2015); (b) Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., Chew, A., Hauck, B., Wright, J.F., Milone, M.C., Levine B.L., June, C.H.: Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. New England J. Med. 368, 1509–1518 (2013); (c) Linette, G.P., Stadtmauer, E.A., Maus, M.V., Rapoport, A.P., Levine, B.L., Emery, L., Litzky, L., Bagg, A., Carreno, B.M., Cimino, P.J., Binder-Scholl, G.K., Smethurst, D.P., Gerry, A.B., Pumphrey, N.J., Bennett, A.D., Brewer, J.E., Dukes, J., Harper, J., Tayton-Martin, H.K., Jakobsen, B.K., Hassan, N.J., Kalos, M., June, C.H.: Cardiovascular toxicity and titin cross-reactivity of affinity enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013); (d) Cameron, B.J., Gerry, A.B., Dukes, J., Harper, J.V., Kannan, V., Bianchi, F.C., Grand, F., Brewer, J.E., Gupta, M., Plesa, G., Bossi, G., Vuidepot, A., Powlesland, A.S., Legg, A., Adams, K.J., Bennett, A.D., Pumphrey, N.J., Williams, D.D., Binder-Scholl, G., Kulikovskaya, I., Levine, B.L., Riley, J.L., Varela-Rohena, A., Stadtmauer, E.A., Rapoport, A.P., Linette, G.P., June, C.H., Hassan, N.J., Kalos, M., Jakobsen, B.K.: Identification of a Titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Science Transl. Med. 5, 197ra103 (2013)

    Google Scholar 

  33. Lee, D.W., Gardner, R., Porter, D.L., Louis, C.U., Ahmed, N., Jensen, M., Grupp, S.A., Mackall, C.L.: How I treat: current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014)

    Article  CAS  Google Scholar 

  34. Ramos, C.A., Asgari, Z., Liu, E., Yvon, E., Heslop, H.E., Rooney, C.M., Brenner, M.K., Dotti, G.: An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells 28, 1107–1115 (2010)

    Article  CAS  Google Scholar 

  35. Ciceri, F., Bonini, C., Stanghellini, M.T., Bondanza, A., Traversari, C., Salomoni, M., Turchetto, L., Colombi, S., Bernardi, M., Peccatori, J., Pescarollo, A., Servida, P., Magnani, Z., Perna, S.K., Valtolina, V., Crippa, F., Callegaro, L., Spoldi, E., Crocchiolo, R., Fleischhauer, K., Ponzoni, M., Vago, L., Rossini, S., Santoro, A., Todisco, E., Apperley, J., Olavarria, E., Slavin, S., Weissinger, E.M., Ganser, A., Stadler, M., Yannaki, E., Fassas, A., Anagnostopoulos, A., Bregni, M., Stampino, C.G., Bruzzi, P., Bordignon, C.: Tk007 phase Ii study final analysis. Genetically modified donor lymphocytes abate transplant related mortality and increase leukaemia-free survival providing early immune reconstitution after haploidentical haematopoietic stem cell transplantation. Lancet Oncol 10, 489–500 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohinee Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, S., Mukherjee, A. (2019). CAR-T Cell Immune Therapy: Engineering T Cells to Treat Cancer. In: Khoobchandani, M., Saxena, A. (eds) Biotechnology Products in Everyday Life. EcoProduction. Springer, Cham. https://doi.org/10.1007/978-3-319-92399-4_7

Download citation

Publish with us

Policies and ethics