Skip to main content

PIK3CA-Related Overgrowth Spectrum (PROS)

  • Chapter
  • First Online:
Evidence-Based Management of Head and Neck Vascular Anomalies

Abstract

PIK3CA-related overgrowth spectrum (PROS) refers to a group of disorders of segmental overgrowth caused by mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). PROS is an umbrella term that includes several diagnostic entities, some of which were independently described prior to the discovery that PIK3CA mutations were common to all (Keppler-Noreuil et al, Am J Med Genet A 164A(7):1713–1733, 2014; Mirzaa et al, PIK3CA-related segmental overgrowth. In: Pagon et al (ed), GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2016, 2013). The mutations that cause PROS are typically, but not always, postzygotic, meaning that the mutation is not present in every cell in the body. The resulting mosaicism causes some of the phenotypic variation, although specific PIK3CA genotypes also contribute. The PROS diagnostic entities (Keppler-Noreuil et al, Am J Med Genet A 167A(2):287–295, 2015) include:

  • Congenital lipomatous overgrowth, vascular malformations, epidermal nevi, scoliosis/skeletal and spinal (CLOVES) syndrome

  • Fibroadipose hyperplasia or overgrowth (FAO)/hemihyperplasia multiple lipomatosis (HHML)

  • Klippel-Trenaunay syndrome (KTS)

  • Megalencephaly-capillary malformation syndrome (MCAP syndrome)

  • Hemimegalencephaly (HMEG) and dysplastic megalencephaly (DMEG)

  • Isolated macrodactyly

  • Isolated lymphatic malformations (LM)

  • Facial infiltrating lipomatosis

  • Focal cortical dysplasia (FCD)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ***Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, Tosi LL, Huson SM, Whitehouse RW, Jakkula E, Grant I, Balasubramanian M, Chandler KE, Fraser JL, Gucev Z, Crow YJ, Brennan LM, Clark R, Sellars EA, Pena LD, Krishnamurty V, Shuen A, Braverman N, Cunningham ML, Sutton VR, Tasic V, Graham JM Jr, Geer J Jr, Henderson A, Semple RK, Biesecker LG. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A. 2014;164A(7):1713–33. https://doi.org/10.1002/ajmg.a.36552. Epub 2014 Apr 29.

    Article  CAS  PubMed  Google Scholar 

  2. Mirzaa G, Conway R, Graham JM Jr, Dobyns WB. PIK3CA-related segmental overgrowth. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle: University of Washington.; ; 1993–2016; 2013.

    Google Scholar 

  3. **Kang HC, Baek ST, Song S, Gleeson JG. Clinical and genetic aspects of the segmental overgrowth spectrum due to somatic mutations in PIK3CA. J Pediatr. 2015;167(5):957–62. https://doi.org/10.1016/j.jpeds.2015.07.049. Epub 2015 Sep 1. No abstract available.

    Article  PubMed  Google Scholar 

  4. Blei F. Overgrowth syndromes with vascular anomalies. Curr Probl Pediatr Adolesc Health Care. 2015;45(4):118–31. https://doi.org/10.1016/j.cppeds.2015.03.002. Epub 2015 Apr 27. Review.

    Article  PubMed  Google Scholar 

  5. Keppler-Noreuil KM, Rios JJ, Parker VE, Semple RK, Lindhurst MJ, Sapp JC, Alomari A, Ezaki M, Dobyns W, Biesecker LG. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–95. https://doi.org/10.1002/ajmg.a.36836. Epub 2014 Dec 31.

    Article  CAS  PubMed  Google Scholar 

  6. ***Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovee JV, Rialon KL, Guevara CJ, Alomari AI, Greene AK, Fishman SJ, Kozakewich HP, Maclellan RA, Mulliken JB, Rahbar R, Spencer SA, Trenor CC 3rd, Upton J, Zurakowski D, Perkins JA, Kirsh A, Bennett JT, Dobyns WB, Kurek KC, Warman ML, McCarroll SA, Murillo R. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166(4):1048–54. e1–5, United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maclellan RA, Luks VL, Vivero MP, Mulliken JB, Zurakowski D, Padwa BL, Warman ML, Greene AK, Kurek KC. PIK3CA activating mutations in facial infiltrating lipomatosis. Plast Reconstr Surg. 2014;133(1):12e–9e. https://doi.org/10.1097/01.prs.0000436822.26709.7c.

    Article  CAS  PubMed  Google Scholar 

  8. Hucthagowder V, Shenoy A, Corliss M, Vigh-Conrad KA, Storer C, Grange DK, Cottrell CE. Utility of clinical high-depth next generation sequencing for somatic variant detection in the PIK3CA-related overgrowth spectrum. Clin Genet. 2016; https://doi.org/10.1111/cge.12819. [Epub ahead of print].

    Article  PubMed  Google Scholar 

  9. Martinez-Lopez A, Blasco-Morente G, Perez-Lopez I, Herrera-Garcia JD, Luque-Valenzuela M, Sanchez-Cano D, Lopez-Gutierrez JC, Ruiz-Villaverde R, Tercedor-Sanchez J. CLOVES syndrome: review of a PIK3CA-related overgrowth spectrum (PROS). Clin Genet. 2016; https://doi.org/10.1111/cge.12832. [Epub ahead of print] Review.

    Article  PubMed  Google Scholar 

  10. García-Carracedo D, Ángeles Villaronga M, Álvarez-Teijeiro S, Hermida-Prado F, Santamaría I, Allonca E, Suárez-Fernández L, Victoria Gonzalez M, Balbín M, Astudillo A, Martínez-Camblor P, Su GH, Pablo Rodrigo J, María García-Pedrero J. Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget. 2016; https://doi.org/10.18632/oncotarget.8957. [Epub ahead of print].

  11. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. https://doi.org/10.1038/nrc2664.

    Article  CAS  PubMed  Google Scholar 

  12. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56. https://doi.org/10.1038/nrd4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. *Osborn AJ, Dickie P, Neilson DE, Glaser K, Lynch KA, Gupta A, Dickie BH. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. Hum Mol Genet. 2015;24(4):926–38. https://doi.org/10.1093/hmg/ddu505. Epub 2014 Oct 6.

    Article  CAS  PubMed  Google Scholar 

  14. **Loconte DC, Grossi V, Bozzao C, Forte G, Bagnulo R, Stella A, Lastella P, Cutrone M, Benedicenti F, Susca FC, Patruno M, Varvara D, Germani A, Chessa L, Laforgia N, Tenconi R, Simone C, Resta N. Molecular and functional characterization of three different postzygotic mutations in PIK3CA-related overgrowth spectrum (PROS) patients: effects on PI3K/AKT/mTOR signaling and sensitivity to PIK3 inhibitors. PLoS One. 2015;10(4):e0123092. https://doi.org/10.1371/journal.pone.0123092. eCollection 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, Baselga J. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med. 2016;8(332):332ra342. https://doi.org/10.1126/scitranslmed.aaf1164.

    Article  CAS  Google Scholar 

  16. Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VE, Chivite I, Vanhaesebroeck B. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med. 2016;8(332):332ra343. https://doi.org/10.1126/scitranslmed.aad9982.

    Article  CAS  Google Scholar 

  17. Roy A, Skibo J, Kalume F, Ni J, Rankin S, Lu Y, Millen KJ. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. Elife. 2015;4 https://doi.org/10.7554/eLife.12703.

  18. Vikkula M, Boon LM, Carraway KL 3rd, Calvert JT, Diamonti AJ, Goumnerov B, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell. 1996;87(7):1181–90.

    Article  CAS  PubMed  Google Scholar 

  19. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol. 2006;18(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  20. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510. https://doi.org/10.1038/onc.2008.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP, Warman ML. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90(6):1108–15. https://doi.org/10.1016/j.ajhg.2012.05.006. Epub 2012 May 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conway RL, Pressman BD, Dobyns WB, Danielpour M, Lee J, Sanchez-Lara PA, Graham JM Jr. Neuroimaging findings in macrocephaly-capillary malformation: a longitudinal study of 17 patients. Am J Med Genet A. 2007;143A(24):2981–3008. https://doi.org/10.1002/ajmg.a.32040.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lapunzina P, Gairi A, Delicado A, Mori MA, Torres ML, Goma A, et al. Macrocephaly-cutis marmorata telangiectatica congenita: report of six new patients and a review. Am J Med Genet A. 2004;130A(1):45–51. https://doi.org/10.1002/ajmg.a.30235.

    Article  PubMed  Google Scholar 

  24. Moore CA, Toriello HV, Abuelo DN, Bull MJ, Curry CJ, Hall BD, Dobyns WB. Macrocephaly-cutis marmorata telangiectatica congenita: a distinct disorder with developmental delay and connective tissue abnormalities. Am J Med Genet. 1997;70(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  25. Wright DR, Frieden IJ, Orlow SJ, Shin HT, Chamlin S, Schaffer JV, Paller AS. The misnomer “macrocephaly-cutis marmorata telangiectatica congenita syndrome”: report of 12 new cases and support for revising the name to macrocephaly-capillary malformations. Arch Dermatol. 2009;145(3):287–93. https://doi.org/10.1001/archdermatol.2008.545.

  26. Cohen MM Jr. Beckwith-Wiedemann syndrome: historical, clinicopathological, and etiopathogenetic perspectives. Pediatr Dev Pathol. 2005;8(3):287–304. https://doi.org/10.1007/s10024-005-1154-9.

    Article  PubMed  Google Scholar 

  27. *Mussa A, Di Candia S, Russo S, Catania S, De Pellegrin M, Di Luzio L, et al. Recommendations of the Scientific Committee of the Italian Beckwith-Wiedemann Syndrome Association on the diagnosis, management and follow-up of the syndrome. Eur J Med Genet. 2016;59(1):52–64. https://doi.org/10.1016/j.ejmg.2015.11.008.

    Article  PubMed  Google Scholar 

  28. Tan TY, Amor DJ. Tumour surveillance in Beckwith-Wiedemann syndrome and hemihyperplasia: a critical review of the evidence and suggested guidelines for local practice. J Paediatr Child Health. 2006;42(9):486–90. https://doi.org/10.1111/j.1440-1754.2006.00908.x.

    Article  PubMed  Google Scholar 

  29. Hoyme HE, Seaver LH, Jones KL, Procopio F, Crooks W, Feingold M. Isolated hemihyperplasia (hemihypertrophy): report of a prospective multicenter study of the incidence of neoplasia and review. Am J Med Genet. 1998;79(4):274–8.

    Article  CAS  PubMed  Google Scholar 

  30. Clericuzio CL, Martin RA. Diagnostic criteria and tumor screening for individuals with isolated hemihyperplasia. Genet Med. 2009;11(3):220–2. https://doi.org/10.1097/GIM.0b013e31819436cf.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alomari AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18(1):1–7. https://doi.org/10.1097/MCD.0b013e328317a716.

    Article  PubMed  Google Scholar 

  32. Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet. 2000;356(9225):194–202.

    Article  CAS  PubMed  Google Scholar 

  33. MacDonald AS, Group RGS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation. 2001;71(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  34. Tedesco Silva H Jr, Rosso Felipe C, Medina Pestana JO. Reviewing 15 years of experience with sirolimus. Transplant Res. 2015;4(Suppl 1):6. https://doi.org/10.1186/s13737-015-0028-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hammill AM, Wentzel M, Gupta A, Nelson S, Lucky A, Elluru R, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57(6):1018–24. https://doi.org/10.1002/pbc.23124.

    Article  PubMed  Google Scholar 

  36. Lackner H, Karastaneva A, Schwinger W, Benesch M, Sovinz P, Seidel M, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174(12):1579–84. https://doi.org/10.1007/s00431-015-2572-y.

    Article  CAS  PubMed  Google Scholar 

  37. Vlahovic AM, Vlahovic NS, Haxhija EQ. Sirolimus for the Treatment of a Massive Capillary-Lymphatico-Venous Malformation: A Case Report. Pediatrics. 2015;136(2):e513–6. https://doi.org/10.1542/peds.2014-3469.

    Article  PubMed  Google Scholar 

  38. ***Adams DM, Trenor CC 3rd, Hammill AM, Vinks AA, Patel MN, Chaudry G, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257. https://doi.org/10.1542/peds.2015-3257.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

To assist the reader in gaining familiarity with available evidence, the following rating system has been used to indicate key references for each chapter’s content:

***: Critical material. Anyone dealing with this condition should be familiar with this reference.

**: Useful material. Important information that is valuable in in clinical or scientific practice related to this condition.

*: Optional material. For readers with a strong interest in the chapter content or a desire to study it in greater depth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Bennett MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conboy, E., Bennett, J.T., Deyle, D. (2018). PIK3CA-Related Overgrowth Spectrum (PROS). In: Perkins, J., Balakrishnan, K. (eds) Evidence-Based Management of Head and Neck Vascular Anomalies. Springer, Cham. https://doi.org/10.1007/978-3-319-92306-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92306-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92305-5

  • Online ISBN: 978-3-319-92306-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics