Skip to main content

NOMA-Based Integrated Terrestrial-Satellite Networks

  • Chapter
  • First Online:
Multiple Access Techniques for 5G Wireless Networks and Beyond

Abstract

In this chapter, we investigate the downlink transmission of a non-orthogonal multiple access (NOMA)-based integrated terrestrial-satellite network, in which the NOMA-based terrestrial networks and the satellite cooperatively provide coverage for ground users while reusing the entire bandwidth. A channel quality-based scheme is proposed to select users for the satellite, and we then formulate the terrestrial user pairing as a max–min problem to maximize the minimum channel correlation between users in one NOMA group. We first investigate the capacity performance of the terrestrial networks and the satellite networks separately. Then, a joint iteration algorithm is proposed to maximize the total system capacity, where we introduce the interference temperature limit for the satellite since the satellite can cause interference to all BS users. Finally, numerical results are provided to evaluate the user paring scheme as well as the total system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in Proceedings of IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5

    Google Scholar 

  2. L. Dai, B. Wang, Y. Yuan, S. Han, C.I, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Google Scholar 

  3. 3rd Generation Partnership Project (3GPP), Study on downlink multiuser superposition transmission for LTE (2016)

    Google Scholar 

  4. W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55(10), 176–183 (2017)

    Article  Google Scholar 

  5. Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, System level performance evaluation of downlink non-orthogonal multiple access (NOMA), in Proceedings of IEEE 24th PIMRC (2013), pp. 611–615

    Google Scholar 

  6. Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Sig. Process. Lett. 21(12), 1501–1505 (2014)

    Article  Google Scholar 

  7. S. Timotheou, I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems. IEEE Sig. Process. Lett. 22(10), 1647–1651 (2015)

    Article  Google Scholar 

  8. J. Choi, Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Commun. Lett. 18(2), 313–316 (2014)

    Article  MathSciNet  Google Scholar 

  9. T. Cover, Broadcast channels. IEEE Trans. Inf. Theory 18(1), 2–14 (1972)

    Article  MathSciNet  Google Scholar 

  10. P.W. Wolniansky, G.J. Foschini, G.D. Golden, R. Valenzuela, V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel, in Proceedings of URSI International Symposium on Signals, Systems, and Electronics (1998), pp. 295–300

    Google Scholar 

  11. Z. Ding, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  12. Y. Liu, Z. Ding, M. Elkashlan, H.V. Poor, Cooperative Non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 34(4), 938–953 (2016)

    Article  Google Scholar 

  13. Z. Ding, P. Fan, H.V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)

    Article  Google Scholar 

  14. B. Kim et al., Non-orthogonal multiple access in a downlink multiuser beamforming system, in Proceedings of IEEE MILCOM (2013), pp. 1278–1283

    Google Scholar 

  15. K. Higuchi, Y. Kishiyama, Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink, in Proceedings of IEEE Vehicular Technology Conference (VTC Fall) (2013), pp. 1–C5

    Google Scholar 

  16. J. Choi, Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Trans. Commun. 63(3), 791–800 (2015)

    Article  Google Scholar 

  17. M.F. Hanif, Z. Ding, T. Ratnarajah, G.K. Karagiannidis, A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process. 64(1), 76–88 (2016)

    Article  MathSciNet  Google Scholar 

  18. Q. Sun, S. Han, C. I, and Z. Pan, On the ergodic capacity of MIMO NOMA systems, IEEE Wirel. Commun. Lett. 4(4), 405–408 (2015)

    Google Scholar 

  19. Z. Ding, R. Schober, H.V. Poor, A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wirel. Commun. 15(6), 4438–4454 (2016)

    Article  Google Scholar 

  20. Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15(1), 537–552 (2016)

    Article  Google Scholar 

  21. 3rd Generation Partnership Project (3GPP), Study on Architecture for Next Generation System (2016)

    Google Scholar 

  22. E. Lagunas, S.K. Sharma, S. Maleki, S. Chatzinotas, B. Ottersten, Resource allocation for cognitive satellite communications with incumbent terrestrial networks. IEEE Trans. Cognit. Commun. Netw. 1(3), 305–317 (2015)

    Article  Google Scholar 

  23. C. Jiang, Y. Chen, K.J.R. Liu, Y. Ren, Renewal-theoretical dynamic spectrum access in cognitive radio network with unknown primary behavior. IEEE J. Sel. Areas Commun. 31(3), 406–416 (2013)

    Article  Google Scholar 

  24. C. Jiang, H. Zhang, Y. Ren, H. Chen, Energy-efficient non-cooperative cognitive radio networks: micro, meso and macro views. IEEE Commun. Mag. 52(7), 14–20 (2014)

    Article  Google Scholar 

  25. H. Yizhou, C. Gaofeng, L. Pengxu, C. Ruijun, W. Weidong, Timing advanced estimation algorithm of low complexity based on DFT spectrum analysis for satellite system. China Commun. 12(4), 140–150 (2015)

    Article  Google Scholar 

  26. A.H. Khan, M.A. Imran, B.G. Evans, Semi-adaptive beamforming for OFDM based hybrid terrestrial-satellite mobile system. IEEE Trans. Wirel. Commun. 11(10), 3424–3433 (2012)

    Article  Google Scholar 

  27. K. An, M. Lin, J. Ouyang, Y. Huang, G. Zheng, Symbol error analysis of hybrid satellite-terrestrial cooperative networks with cochannel interference. IEEE Commun. Lett. 18(11), 1947–1950 (2014)

    Article  Google Scholar 

  28. K. An, M. Lin, T. Liang, J. Wang, J. Wang, Y. Huang, A.L. Swindlehurst, Performance analysis of multi-antenna hybrid satellite-terrestrial relay networks in the presence of interference. IEEE Trans. Commun. 63(11), 4390–4404 (2015)

    Article  Google Scholar 

  29. D.T. Ngo, S. Khakurel, T. Le-Ngoc, Joint subchannel assignment and power allocation for OFDMA femtocell networks. IEEE Trans. Wirel. Commun. 13(1), 342–355 (2014)

    Article  Google Scholar 

  30. Z. Yu, K. Wang, H. Ji, X. Li, H. Zhang, Dynamic resource allocation in TDD-based heterogeneous cloud radio access networks. China Commun. 13(6), 1–11 (2016)

    Article  Google Scholar 

  31. C. Berge, Two theorems in graph theory. Proc. Nat. Acad. Sci. 43(9), 842–844 (1957)

    Article  MathSciNet  Google Scholar 

  32. Z. Galil, Efficient algorithms for finding maximum matching in graphs. ACM Comput. Surv. 18(1), 23–38 (1986)

    Article  MathSciNet  Google Scholar 

  33. B.R. Marks, G.P. Wright, A general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 26(4), 681–683 (1978)

    Article  MathSciNet  Google Scholar 

  34. J. Papandriopoulos, J.S. Evans, SCALE: a low-complexity distributed protocol for spectrum balancing in multiuser DSL networks. IEEE Trans. Inf. Theory 55(8), 3711–3724 (2009)

    Article  MathSciNet  Google Scholar 

  35. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004)

    Google Scholar 

  36. T.K.Y. Lo, Maximum ratio transmission. IEEE Trans. Commun. 47(10), 1458–1461 (1999)

    Article  Google Scholar 

  37. X. Zhu, C. Jiang, W. Feng, L. Kuang, Z. Han, J. Lu, Resource allocation in spectrum-sharing cloud based integrated terrestrial-satellite network, in Proceedings of IEEE IWCMC (Valencia, 2017), pp. 334–339

    Google Scholar 

  38. J. Du, C. Jiang, Q. Guo, M. Guizani, Y. Ren, Cooperative earth observation through complex space information networks. IEEE Trans. Wireless Commun. 23(2), 136–144 (2016)

    Article  Google Scholar 

  39. J. Du, C. Jiang, Y. Qian, Z. Han, Y. Ren, Resource allocation with video traffic prediction in cloud-based space systems. IEEE Trans. Multimed. 18(5), 820–830 (2016)

    Article  Google Scholar 

  40. D. Christopoulos, S. Chatzinotas, B. Ottersten, Multicast multigroup precoding and user scheduling for frame-based satellite communications. IEEE Trans. Wirel. Commun. 14(9), 4695–4707 (2015)

    Article  Google Scholar 

  41. 3rd Generation Partnership Project (3GPP), Further advancements for E-UTRA physical layer aspects (2016)

    Google Scholar 

  42. E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, W. Papke, The land mobile satellite communication channel-recording, statistics, and channel model. IEEE Trans. Veh. Technol. 40(2), 375–386 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 91438206, 91638205, 91538203, and 61621091) and Young Elite Scientist Sponsorship Program by CAST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, X., Jiang, C., Kuang, L., Ge, N., Lu, J. (2019). NOMA-Based Integrated Terrestrial-Satellite Networks. In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92090-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92089-4

  • Online ISBN: 978-3-319-92090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics