Skip to main content

Sparse Code Multiple Access (SCMA)

  • Chapter
  • First Online:
Multiple Access Techniques for 5G Wireless Networks and Beyond

Abstract

Sparse Code Multiple Access (SCMA) enables non-orthogonal transmissions of multiple users’ signals among code and power domain, which could greatly improve the spectral efficiency. Due to the sparsity of the multi-dimensional codewords, the low-complexity message-passing algorithm (MPA) can be adopted and near maximum likelihood (ML) performance for multi-user detection can be achieved. In this chapter, a general description of SCMA including the system model, codebook mapping, and multi-user detection schemes are provided. The performance analysis for SCMA, such as the codeword error probability and cutoff rate, are introduced. A general introduction on the codebooks design is given, and approaches of some efficient construction for the multi-dimensional constellations/codebooks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practical scenarios, each user employs one or multiple layers.

  2. 2.

    Without feedback from the FEC decoder, \(p(\mathbf {x}_j) = \frac{1}{M}\) for all the users.

  3. 3.

    There are M! possible pairing patterns for \((\mathbf {x}_{i,a}, \mathbf {x}_{i,b})\), hence M! choices for \(\mathscr {P}_i\). The tightness of the bound is determined by the specific selection of the pairing patterns. A detailed seek for the appropriate pairing pattern can be found in [19].

  4. 4.

    This is the relaxed product distance that takes the product of all the dimension-wise distance between two points into consideration.

  5. 5.

    The star-QAM-based codebook targets on downlink channels, while its performance deteriorates in the uplink and for large constellation size.

  6. 6.

    The constellation 1 is constructed by rotation over the product of a binary phase-shift keying (BPSK) and a quadrature phase-shift keying (QPSK) constellation with Gray labelings, using the approach in Sect. 12.3.2.2 (G\(_{8,8}\)), and constellation 2 is the repetition over an 8PSK constellation with Gray labeling, i.e., the LDS scheme [29].

References

  1. H. Nikopour, H. Baligh, Sparse code multiple access, in IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC’13) (2013), pp. 332–336

    Google Scholar 

  2. S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, Y. Chen, Sparse code multiple access: an energy efficient uplink approach for 5G wireless systems, in IEEE Global Communications Conference (GLOBECOM’14) (2014), pp. 4782–4787

    Google Scholar 

  3. Y. Wu, S. Zhang, Y. Chen, Iterative multiuser receiver in sparse code multiple access systems, in Proceedings of IEEE International Conference on Communications (ICC’15) (2015), pp. 2918–2923

    Google Scholar 

  4. J. Zhang, L. Lu, Y. Sun et. al., PoC of SCMA-Based Uplink Grant-Free Transmission in UCNC for 5G. IEEE J. Sel. Areas Commun. 35, 1353–1362 (2017)

    Google Scholar 

  5. R. Hoshyar, F.P. Wathan, R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 56, 1616–1626 (2008)

    Article  MathSciNet  Google Scholar 

  6. D. Guo, C. Wang, Multiuser detection of sparsely spread CDMA. IEEE J. Sel. Areas Commun. 26, 421–431 (2008)

    Article  Google Scholar 

  7. R1-166098: Discussion on feasibility of advanced MU-detector. Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting \(\#\)86 (2016)

    Google Scholar 

  8. X. Meng, Y. Wu, Y. Chen, M. Cheng M, Low complexity receiver for uplink SCMA system via expectation propagation, in Proceedings of Wireless Communications and Networking Conference (WCNC’ 17), (2017), pp. 1–5

    Google Scholar 

  9. J. Bao, Z. Ma, G.K. Karagiannidis, M. Xiao, Z. Zhu, Joint multiuser detection of multidimensional constellations over fading channels. IEEE Trans. Commun. 65, 161–172 (2017)

    Google Scholar 

  10. D. Tse, P. Viswanath, Fundamentals of Wireless Communications (Cambridge University Press, 2005)

    Google Scholar 

  11. J.G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, New York, 2008)

    Google Scholar 

  12. E. Björnson, D. Hammarwall, B. Ottersten, Exploiting quantized channel norm feedback through conditional statistics in arbitrarily correlated MIMO systems. IEEE Trans. Signal Process. 57, 4027–4041 (2009)

    Article  MathSciNet  Google Scholar 

  13. M. Chiani, D. Dardari, M.K. Simon, New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Trans. Wirel. Commun. 2, 840–845 (2003)

    Article  Google Scholar 

  14. S.J. Grant, J.K. Cavers, Performance enhancement through joint detection of cochannel signals using diversity arrays. IEEE Trans. Commun. 46, 1038–1049 (1998)

    Article  Google Scholar 

  15. X. Zhu, R.D. Murch, Performance analysis of maximum likelihood detection in a MIMO antenna system. IEEE Trans. Commun. 50, 187–191 (2002)

    Article  Google Scholar 

  16. M. Taherzadeh, H. Nikopour, A. Bayesteh, H. Baligh, SCMA codebook design, in Proceedings of IEEE 80th Conference on Vehicular Technology (VTC Fall’14) (2014), pp. 1–5

    Google Scholar 

  17. A. Montanari, D. Tse, Analysis of belief propagation for nonlinear problems: the example of CDMA (or: How to prove Tanaka’s formula), in Proceeding IEEE Information Theory Workshop (ITW) (2006), pp. 122–126

    Google Scholar 

  18. C.C. Wang, D. Guo, Belief propagation is asymptotically equivalent to MAP estimation for sparse linear systems, in Proceedings of 44th Annual Allerton Conference on Communication, Control, and Computing (2006), pp. 926–935

    Google Scholar 

  19. L. Li, Z. Ma, L. Wang, P. Fan, L. Hanzo, Cutoff rate of sparse code multiple access in downlink broadcast channels. IEEE Trans. Commun. 65, 3328–3342 (2017)

    Google Scholar 

  20. J. Boutros, E. Viterbo, C. Rastello, J.C. Belfiore, Good lattice constellations for both Rayleigh fading and Gaussian channels. IEEE Trans. Inf. Theory. 42, 502–518 (1996)

    Article  Google Scholar 

  21. J. Boutros, E. Viterbo, Signal space diversity: a power- and bandwidth-efficient diversity technique for the rayleigh fading channel. IEEE Trans. Inf. Theroy 44, 1453–1467 (1998)

    Article  MathSciNet  Google Scholar 

  22. J. Bao, Z. Ma, Z. Ding, G.K. Karagiannidis, Z. Zhu, On the design of multiuser codebooks for uplink SCMA systems. IEEE Commun. Lett. 20, 1920–1923 (2016)

    Article  Google Scholar 

  23. Y. Xin, Z. Wang, G.B. Giannakis, Space-time diversity systems based on linear constellation precoding. IEEE Trans. Wireless Commun. 2, 294–309 (2003)

    Article  Google Scholar 

  24. G.H. Golub, C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1996)

    Google Scholar 

  25. S.P. Herath, N.H. Tran, T. Le-Ngoc, Rotated multi-D constellations in rayleigh fading: mutual information improvement and pragmatic approach for near-capacity performance in high-rate regions. IEEE Trans. Commun. 60, 3694–3704 (2012)

    Article  Google Scholar 

  26. J. Bao, Z. Ma, M.A. Mahamadu, Z. Zhu, D. Chen, Spherical codes for SCMA codebook, in Proceedings of IEEE 83th Conference on Vehicular Technology (VTC Spring’16) (2016), pp. 1–5

    Google Scholar 

  27. L. Yu, X. Lei, P. Fan, D. Chen, An optimized design of SCMA codebook based on star-QAM signaling constellations, in Proceedings of International Conference on Wireless Communications & Signal Processing (WCSP’15) (2015), pp. 1–5

    Google Scholar 

  28. S.T. Brink, Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans. Commun. 49, 1727–1737 (2001)

    Article  Google Scholar 

  29. J.V.D. Beek, B.M. Popović, Multiple access with low-density signatures, in Proceedings of IEEE Conference on Global Communications (GLOBECOM) (2009)

    Google Scholar 

  30. A. Ashikhmin, G. Kramer, S.T. Brink, Extrinsic information transfer functions: model and erasure channel properties. IEEE Trans. Inf. Theory. 50, 2657–2673 (2004)

    Article  MathSciNet  Google Scholar 

  31. N.H. Tran, H.H. Nguyen, Design and performance of BICM-ID systems with hypercube constellations. IEEE Trans. Wirel. Commun. 5, 1169–1179 (2006)

    Article  Google Scholar 

  32. A. Seyedi, Multi-QAM modulation: a low-complexity full rate diversity scheme, in Proceedings of IEEE International Conference on Communications (ICC) (2006), pp. 1470–1475

    Google Scholar 

  33. C.M. Thomas, M.Y. Weidner, S.H. Durrani, Digital amplitude-phase keying with \(M\)-ary alphabets. IEEE Trans. Commun. 22, 168–180 (1974)

    Article  Google Scholar 

  34. Q. Xie, Z. Yang, J. Song, L. Hanzo, EXIT-chart-matching-aided near-capacity coded modulation design and a BICM-ID design example for both gaussian and rayleigh channels. IEEE Trans. Veh. Tech. 62, 1216–1227 (2013)

    Article  Google Scholar 

  35. F. Schreckenbach, N. Görtz, J. Hagenauer, G. Bauch, Optimization of symbol mappings for bit-interleaved coded modulation with iterative decoding. IEEE Commun. Lett. 7, 593–595 (2003)

    Google Scholar 

  36. M.T. Boroujeni, A. Bayesteh, H. Nikopour, M. Baligh, System and method for generating codebooks with small projections per complex dimension and utilization thereof, U.S. Patent 0,049,999, 18 Feb 2016

    Google Scholar 

  37. A. Bayesteh, H. Nikopour, M. Taherzadeh, H. Baligh, J. Ma, Low complexity techniques for SCMA detection, in Proceedings of IEEE Globecom Workshops (2015), pp. 1–6

    Google Scholar 

  38. R1-164037: LLS results for uplink multiple access. Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting \(\#\)85 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Z., Bao, J. (2019). Sparse Code Multiple Access (SCMA). In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92090-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92089-4

  • Online ISBN: 978-3-319-92090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics