Skip to main content

Dielectric Polymers

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

Polymer-based dielectric materials have attractive features making them potentially promising alternatives to usually used inorganic and ceramic-based dielectric materials due to a number of reasons including (a) higher flexibility; (b) easy, cost-effective processing feasibility; and (c) attractive chemical stability along with readily changeable characters. However, one of the main disadvantages of this type of polymer dielectric is their lower thermal stability which limits their wider application potentials. In addition, usually polymer dielectric materials show low dielectric constants compared to inorganic dielectric materials. In addition, dielectric characters can be designed by introducing polarizable groups into polymer chains by increasing free volume by inducing porosity as well as copolymerization. Besides this, the value of dielectric constant can be effectively increased by synthesizing nanocomposites by introducing inorganic fillers into composite structure to acquire high dielectric constants. Dielectric polymers have many applications in electronics. For example, the performance of advanced polymer dielectrics is useful to realize high-power electronic circuits in a miniature form. However, these polymeric materials are required to fulfill different criteria (such as thermal, environmental, and electrical stability, low moisture uptake, high breakdown voltage or low leakage current, low dielectric constant, low loss tangent, high glass transition temperature, and low surface roughness) for their effective applications in different devices including in microelectronics. Many investigations have been reported on the use of polymer dielectrics and evaluated the feasibility of utilizing these materials for various applications. Briefly three types of polymer dielectrics (such as dielectric polymers, organic-inorganic material-based hybrid composites, and coated polymer dielectrics) along with other necessary elements are selectively discussed in this chapter. In addition, behaviors of dielectric elastomers are also briefly covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. H. S. Nalwa (ed.), Ferroelectric Polymers: Chemistry, Physics and Applications (Marcel Dekker, New York, 1995), pp. 5–75

    Google Scholar 

  2. G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Large and broadband piezoelectricity in smart polymer-foam spacecharge electrets. Appl. Phys. Lett. 77, 3827–3829 (2000)

    Article  CAS  Google Scholar 

  3. J. Peltonen, M. Paajanen, J. Lekkala, Determination of the actuator sensitivity of electromechanical polypropylene films by atomic force microscopy. J. App. Phys. 88, 4789–4793 (2000)

    Article  CAS  Google Scholar 

  4. Y. Shi, C. Zhang, H. Zhang, J.H. Bechtel, L.R. Dalton, B.H. Robinson, W.H. Steier, Low (Sub-1-volt) Halfwave voltage polymeric electro-optic modulators achieved by controlling Chromophore shape. Science 288, 119–122 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Q.M. Zhang, V. Bharti, X. Zhao, Giant electrostriction and Relaxor ferroelectric behavior in Electron-irradiated poly(vinylidene fluoridetrifluoroethylene) copolymer. Science 280, 2101–2104 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, C. Huang, An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. H. Nalwa, Handbook of Low and High Dielectric Constant Materials and their Applications (Academic Press, London, 1999), pp. 2–93

    Google Scholar 

  8. T. Osaka, M. Datta, Energy Storage Systems for Electronics (Gordon and Breach, Amsterdam, 2001), pp. 3–75

    Google Scholar 

  9. C. Brosseau, Modellilng and simulation of dielectric heterostructures: A physical survey from an historical perspective. J. Phys. D. Appl. Phys. 39, 1277–1294 (2006)

    Article  CAS  Google Scholar 

  10. V. Myroshnychenko, C. Brosseau, Finite-element modeling method for the prediciton of the complex effective permittivity of two-phase random statistically isotropic heterostructures. J. Appl. Phys. 97, 044101 (2005)

    Article  CAS  Google Scholar 

  11. Y. Rao, J. Qu, T. Marinis, C.P. Wong, A precise numerical prediction of the effective dielectric constant for polymer-ceramic composite based on effective-medium theory. IEEE Trans. Comp. Pack. Tech. 23, 680–683 (2000)

    Article  CAS  Google Scholar 

  12. K.L. Ying, T.E. Hsieh, Sintering behaviors and dielectric properties of nanocrystalline barium titanate. Mater. Sci. Eng. B-Sol. St. Mater. Adv. Technol. 138, 241–245 (2007)

    Article  CAS  Google Scholar 

  13. D.-H. Yoon, J. Zhang, B.I. Lee, Dielectric constant and mixing model of barium titanate composite thick films. Mater. Res. Bull. 38, 765–772 (2003)

    Article  CAS  Google Scholar 

  14. Y. Rao, C.P. Wong, Material characterization of a high-dielectric constant polymer-ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92, 2228–2231 (2004)

    Article  CAS  Google Scholar 

  15. M.G. Todd, F.G. Shi, Complex permittivity of composite systems: A comprehensive interphase approach. IEEE Dielect. El. In. 12, 601–611 (2005)

    Article  Google Scholar 

  16. H.T. Vo, F.G. Shi, Towards model-based engineering of optoelectronic packaging materials: Dielectric constant modelling. Microelec. 33, 409–415 (2002)

    Article  CAS  Google Scholar 

  17. P. Murugaraj, D. Mainwaring, N. Mora-Huertas, Dielectric enhancement of polymernanoparticle through interphase polarizability. J. App. Phy. 98, 054304 (2005)

    Article  CAS  Google Scholar 

  18. Z. Yu, C. Ang, L.E. Cross, A. Petchsuk, T.C. Chung, Dielectric and electroactive strain properties of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Appl. Phys. Lett. 84, 1737–1739 (2004)

    Article  CAS  Google Scholar 

  19. J. Joo, S.M. Long, J.P. Pouget, E.J. Oh, A.G. MacDiarmid, A.J. Epstein, Charge transport of the mesoscopic metallic state in partially crystalline polyanilines. Phys. Rev. B 57, 9567–9579 (1998)

    Article  CAS  Google Scholar 

  20. R. Gregorio, M. Cestari, F.E. Bernardino, Dielectric behavior of thin films of beta- PVDF/PZT and beta-PVDF/BaTiO3 composites. J. Mat. Sci. 31, 2925–2930 (1996)

    Article  CAS  Google Scholar 

  21. Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76, 3804–3806 (2000)

    Article  CAS  Google Scholar 

  22. K. Mazur, Polymer-ferroelectric ceramic composites, in Ferroelectric Polymers: Chemistry, Physics, and Applications, ed. by H.S. Nalwa, (Marcel Dekker Inc., New York, 1995)

    Google Scholar 

  23. D.K. Dasgupta, K. Doughty, Polymer-ceramic composite materials with high dielectric constants. Th. Sol. Film. 158, 93–105 (1988)

    Article  CAS  Google Scholar 

  24. S. Liang, S. Chong, E. Giannelis, Barium titanate/epoxy composite dielectric materials for integrated thin film capacitors, Proceedings of 48th Electronic Components and Technology Conference, pp. 171–175, 1998

    Google Scholar 

  25. H. Windlass, P.M. Raj, D. Balaraman, S.K. Bhattacharya, R.R. Tummala, Processing of polymer-ceramic nanocomposites for system-on-package applications, Proceedings of the 51st Electronic Components and Technology Conference, pp. 1201–1206, 2001

    Google Scholar 

  26. Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J. Appl. Polym. Sci. 83, 1084–1090 (2002)

    Article  CAS  Google Scholar 

  27. Z.M. Dang, Y.H. Lin, C.W. Nan, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mat. 15, 1625–1629 (2003)

    Article  CAS  Google Scholar 

  28. S.D. Cho, J.Y. Lee, J.G. Hyun, K.W. Paik, Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Mater. Sci. Eng. B 110(3), 233–239 (2004)

    Article  CAS  Google Scholar 

  29. R. Popielarz, C.K. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34, 5910–5915 (2001)

    Article  CAS  Google Scholar 

  30. M. Arbatti, X.B. Shan, Z.Y. Cheng, Ceramic-polymer composites with high dielectric constant. Adv. Mater. 19, 1369–1372 (2007)

    Article  CAS  Google Scholar 

  31. P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, J.W. Perry, Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19, 1001–1005 (2007)

    Article  CAS  Google Scholar 

  32. Y. Rao, C.P. Wong, J. Xu, Ultra high k polymer metal composite for embedded capacitor application, US Patent 6864306, 2005

    Google Scholar 

  33. J. Xu, C.P. Wong, Low loss percolative dielectric composite. Appl. Phys. Lett. 87, 082907 (2005)

    Article  CAS  Google Scholar 

  34. Z.M. Dang, Y. Shen, C.W. Nan, Dielectric behavior of three-phase percolative Ni-BaTiO3/Polyvinylidene fluoride composites. Appl. Phys. Lett. 81, 4814–4816 (2002)

    Article  CAS  Google Scholar 

  35. H.W. Choi, Y.W. Heo, J.H. Lee, J.J. Kim, H.Y. Lee, E.T. Park, Y.K. Chung, Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethylmethacrylate composites. Appl. Phys. Lett. 89, 132910 (2006)

    Article  CAS  Google Scholar 

  36. P. M. Raj, D. Bahaman, V. Govind, L. Wan, R. Abothu, R. Gerhardt, S. Bhattacharya, M. Swaminathan, R. Tununala, High frequency characteristics of nanocomposite thin film ‘Supercapacitors’ and their suitability for embedded decoupling, Proceedings of the 54th IEEE Electronic Components and Technology Conference, Las Vegas, NV, pp. 154–161, 2004

    Google Scholar 

  37. J. Xu, C.P. Wong: Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics, Proceedings of the 54th IEEE Electronic Components and Technology Conference, Las Vegas, NV, pp. 536–541, 2004

    Google Scholar 

  38. H. Xu, Z. Dang, M. Jiang, S. Yao, J. Bai, Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black. J. Mat. Chem. 18, 229–234 (2008)

    Article  CAS  Google Scholar 

  39. L. Qi, B.I. Lee, S. Chen, W.D. Samuels, G.J. Exarhos, High-dielectric-constantsilver-epoxy composites as embedded dielectrics. Adv. Mat. 17, 1777–1781 (2005)

    Article  CAS  Google Scholar 

  40. Y. Shen, Y. Lin, M. Li, C.-W. Nan, High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mat. 19, 1418–1422 (2007)

    Article  CAS  Google Scholar 

  41. Q.M. Zhang, H.F. Li, M. Poh, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, An allorganic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. J. Wang, Q. Shen, C. Yang, Q. Zhang, High dielectric constant composite of P(VDFTrFE) with grafted copper phthalocyanine oligmer. Macromolecules 37, 2294–2298 (2004)

    Article  CAS  Google Scholar 

  43. C. Huang, Q.M. Zhang, J. Su, High dielectric constant all polymer percolative composites. Appl. Phys. Lett. 82, 3502–3504 (2003)

    Article  CAS  Google Scholar 

  44. High-k Transistor, Advanced Process Technology. NEC Electronics Corporation, 2005; https://www.nec.com/en/global/techrep/journal/g06/n05/g0605pa.html, accessed on 14th July 2018

  45. IBM and Intel make high-k gate breakthrough, Compound semiconductor net, 2007, https://compoundsemiconductor.net/article/84384/IBM_and_Intel_make_high-k_gate_breakthrough, accessed on 14th July 2018

  46. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348 (1993)

    Article  CAS  Google Scholar 

  47. G.D. Wilk, R.M. Wallace, J.M. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics. J. Appl. Phys. 15(1), 484 (2000)

    Article  Google Scholar 

  48. S. Ezhilvalavan, T. Tseng, Conduction mechanisms in amorphous and crystalline Ta2O5 thin films. J. Appl. Phys. 83(9), 4797 (1998)

    Article  CAS  Google Scholar 

  49. D. Park, Y. King, Q. Lu, T.-J. King, C. Hu, A. Kalnitsky, S.-P. Tay, C.-C. Cheng, Transistor characteristics with Ta2O5 gate dielectric, IEEE Elec. Dev. Lett. 19, 441 (1998)

    Article  CAS  Google Scholar 

  50. J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Tech. B: Microelec. Nanomet. Struc. 18(3), 1785 (2000)

    Article  CAS  Google Scholar 

  51. M.C. Tarplee, V.P. Madangagly, Q. Zhang, T.S. Surdarshan, Design rules for field pate edge termination in SiC Schottky diodes, IEEE trans. El. Dev. 48, 2659 (2001)

    Article  CAS  Google Scholar 

  52. D.C. Sheridan, G. Niu, J.N. Merrett, J.D. Cresller, C. Ellis, C.C. Tin, Design and fabrication of planar guard ring termination for high voltage SiC diodes. Sol. St. Electron. 44, 1367 (2000)

    Article  CAS  Google Scholar 

  53. G. Brezeanu, M. Badila, M. Brezeanu, F. Udrea, C. Boianceanu, I. Enache, F. Draghici, A. Visoreanu, Breakdown performances improvements of SiC diodes using high–k dielectrics, in Proc. of the 28nd International Semiconductor Conference, 2–4 Oct, 2005, Sinaia, Romania, p. 357

    Google Scholar 

  54. M. Brezeanu, M. Badila, G. Brezeanu, F. Udrea, C. Boianceanu, G.A.J. Amaratunga, K. Zekentes, An Effective Field Plate Termination for SiC Devices Based on High-k Dielectrics, Proceedings of International Conference on Silicon Carbide and Related Materials-ICSCRM 2005, 18–23 Sept, 2005, Pittsburg, USA, p.21

    Google Scholar 

  55. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348 (1993)

    Article  CAS  Google Scholar 

  56. G.D. Wilk, R.M. Wallace, J.M. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics. J. Appl. Phys. 15(1), 484 (2000)

    Article  Google Scholar 

  57. S. Ezhilvalavan, T. Tseng, Conduction mechanisms in amorphous and crystalline Ta2O5 thin films. J. Appl. Phys. 83(9), 4797 (1998)

    Article  CAS  Google Scholar 

  58. D. Park, Y. King, Q. Lu, T. King, C. Hu, A. Kalnitsky, S. Tay, C.C. Cheng, Transistor characteristics with Ta2O5 gate dielectric. IEEE Electron Device Letters 19(1), 441

    Google Scholar 

  59. J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science & Technology B: Microelec. Nanomet. Struc 18(3), 1785 (2000)

    Article  CAS  Google Scholar 

  60. M.C. Tarplee, V.P. Madangagly, Q. Zhang, T.S. Surdarshan, Design rules for field pate edge termination in SiC Schottky diodes. IEEE Trans. El. Dev. 48, 2659 (2001)

    Article  CAS  Google Scholar 

  61. D.C. Sheridan, G. Niu, J.N. Merrett, J.D. Cresller, C. Ellis, C.C. Tin, Design and fabrication of planar guard ring termination for high voltage SiC diodes, solid St. Electron. 44, 1367 (2000)

    CAS  Google Scholar 

  62. (a) J.H. Lee, S.H. Kim, G.H. Kim, J.I. Lee, Y.S. Yang, H.Y. Chu, J. Oh, L.M. Do, T. Zyung, Organic transistors using polymeric gate dielectrics. J. Kor. Phys. Soc. 42, S614-S617 (2013); (b) G. Brezeanu, M. Badila, M. Brezeanu, F. Udrea, C. Boianceanu, I. Enache, F. Draghici, A. Visoreanu, Breakdown performances improvements of SiC diodes using high–k dielectrics, in Proc. of the 28nd International Semiconductor Conference, 2–4 Oct, 2005, Sinaia, Romania, p. 357

    Google Scholar 

  63. M. Brezeanu, M. Badila, G. Brezeanu, F. Udrea, C. Boianceanu, G.A.J. Amaratunga, K. Zekentes, An Effective Field Plate Termination for SiC Devices Based on High-k Dielectrics, in Proc. of International Conference on Silicon Carbide and Related Materials-ICSCRM 2005, 18–23 Sept, 2005, Pittsburg, USA, p. 21

    Google Scholar 

  64. F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mat. 20(15), 2842–2858 (2008)

    Article  CAS  Google Scholar 

  65. Pelrine R, Kornbluh RD, Pei Q, et al., Dielectric elastomer artificial muscle actuators: toward biomimetic motion, Proceedings of SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), 10 July 2002, pp. 126–137

    Google Scholar 

  66. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rap. Comm. 31(1), 10–36 (2010)

    Article  CAS  Google Scholar 

  67. C. Löwe, X. Zhang, G. Kovacs, Dielectric elastomers in actuator technology. Adv. Eng. Mat. 7(5), 361–367 (2005)

    Article  CAS  Google Scholar 

  68. R. Shankar, T.K. Ghosh, R.J. Spontak, Dielectric elastomers as next-generation polymeric actuators. Sof. Mat. 3(9), 1116–1129 (2007)

    Article  CAS  Google Scholar 

  69. Y. Bar-Cohen, Biomimetics: Nature-based innovation, chapter 6. Electroactive polymer actuators as artificial muscles, in Electroactive Polymer Actuators as Artificial Muscles, ed. by B.-C. Yoseph, (CRC Press, 2011), pp. 1–53

    Google Scholar 

  70. (a) T.B. Singh, N.S. Sariciftci: Progress in plastic electronics devices. Annu. Rev. Mater. Res. 36,199–230 (2006); (b) T. Mirfakhrai, J.D.W. Madden, R.H. Baughman, Polymer artificial muscles. Mat. Tod. 10(4): 30–38 (2007)

    Google Scholar 

  71. K.J. Kim, S. Tadokoro (eds.), Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors (Springer, 2007), pp. 1–43

    Google Scholar 

  72. G. Gallone, F. Galantini, F. Carpi, Perspectives for new dielectric elastomers with improved electromechanical actuation performance: Composites versus blends. Polym. Int. 59(3), 400–406 (2010)

    Article  CAS  Google Scholar 

  73. L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang, S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3), 1588–1593 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. H. Stoyanov, M. Kollosche, S. Risse, D.N. McCarthy, G. Kofod, Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Sof. Mat. 7(1), 194–202 (2011)

    Article  CAS  Google Scholar 

  75. F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, 1st edn (Academic Press, 2008), pp. 2–96

    Google Scholar 

  76. J. B. Birks (ed.), Modern Dielectric Materials (Heywood & Company, London, 1960), pp. 1–23

    Google Scholar 

  77. A. Maliakal, Chapter 3.2 Dielectric materials: Selection and design, in Organic Field-Effect Transistors, ed. by Z. Bao, J. Locklin (CRC Press, 2007), pp. 229–251

    Google Scholar 

  78. D.W. Van Krevelen, K.T. Nijenhuis, Chapter 11 - electrical properties, in Properties of Polymers, ed. by D.W.V. Krevelen, K.T. Nijenhuis, 4th edn., (Elsevier, Amsterdam, 2009), pp. 319–354

    Google Scholar 

  79. E. Riande, R. Díaz-Calleja, Electrical Properties of Polymers (Marcel Dekker, New York, 2004), pp. 632–657

    Book  Google Scholar 

  80. (a) L.A. Wall, Fluoropolymers (Wiley Interscience, New York, 1972), pp. 1–79; (b) A.E. Feiring, Fluoroplastics, in Organofluorine Chemistry: Principles and Commercial Applications, ed by R.E. Banks, B.E. Smart, J.C. Tatlow (Plenum Press, New York, 1994), pp. 339–372; (c) B. G. Willoughby, R. E. Banks, Fluoropolymers, in Encylopedia of Advanced Materials, ed by B.G. Bloor, R.J. Brook, M.C. Flemings, S. Mahajan, R.W. Cahn (Pergamon: Oxford, UK, 1994), pp. 887–895

    Google Scholar 

  81. R. Seilers, Chapter 25: Polyvinylidene fluoride in the chemical industries, in Modern Fluoropolymers, ed. by J. Scheirs (New York, Wiley, 1997), pp. 487–506

    Google Scholar 

  82. G. Hougham, P.E. Cassidy, K. Johns, T. Davidson, Fluoropolymers: Synthesis and Applications, vol 1–2 (Plenum Press, New York, 1999)

    Google Scholar 

  83. B. Ameduri, B. Boutevin, Well-Architectured Fluoropolymers: Synthesis, Properties and Applications (Elsevier, Amsterdam, 2004), pp. 1–93

    Book  Google Scholar 

  84. B. Ameduri, From Vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends. Chem. Rev. 109(12), 6632–6686 (2009)

    Article  CAS  PubMed  Google Scholar 

  85. (a) B. Baradie, M.S. Shoichet, Synthesis of Fluorocarbon−Vinyl Acetate Copolymers in Supercritical Carbon Dioxide: Insight into Bulk Properties, Macromolecules: 35(9), 3569–3575 (2002); (b) F. Boschet, B. Ameduri, Chem. Rev. 114, 927 (2014)

    Google Scholar 

  86. (a) Y. Patil, H. Hori, H. Tanaka, T. Sakamoto, B. Ameduri, First radical homopolymerisation of 2-trifluoromethacrylic acid in water and study of the degradation of the resulting homopolymers, Chem. Commun. 49, 6662–6664 (2013); (b) Y. Patil, B. Ameduri, Prog. Polym. Sci. 38, 703 (2013)

    Google Scholar 

  87. A.J. Lovinger, G.T. Davis, T. Furukawa, M.G. Broadhurst, Structural and dielectric investigation on the nature of the transition in a copolymer of vinylidene fluoride and trifluoroethylene (52/48 mol %). Macromolecules 5(2), 329–333 (1982)

    Google Scholar 

  88. (a) M. Raihane, B. Ameduri, Radical copolymerization of 2,2,2-trifluoroethyl methacrylate with cyano compounds for dielectric materials: Synthesis and characterization. J. Fluor. Chem. 127(3), 391–399 (2006); (b) M. Uchidari, T. Iwamoto, K. Iwata, M. Tamur, Rep. Prog. Phys. Jpn. 1979, 22, 345

    Google Scholar 

  89. (a) L. Pan, H. Qiu, C. Dou, Y. Li, L. Pu, J. Xu, Y. Shi, Conducting polymer nanostructures: Template synthesis and applications in energy storage. Int. J. Mol. Sci. 11, 2636–2657(2010); (b) F. Guan, J. Wang, L. Yang, J.-K. Tseng, K. Han, Q. Wang, L. Zhu, Macromolecules 44, 2190 (2011)

    Google Scholar 

  90. F. Guan, J. Pan, J. Wang, Q. Wang, L. Zhu, Crystal orientation effect on electric energy storage in poly (vinylidene fluoride-co-hexafluoropropylene) copolymers. Macromolecules 43, 384–392 (2010)

    Article  CAS  Google Scholar 

  91. (a) L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules, 45(7), 2937–2954 (2012); (b) F. Guan, J. Wang, J. Pan, Q. Wang, L. Zhu Macromolecules 2010, 43, 6739

    Google Scholar 

  92. Y. Liu, L. Cui, F. Guan, Y. Gao, N.E. Hedin, L. Zhu, H. Fong, Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40(17), 6283–6290 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. (a) G.M. Spinks, V. Mottaghitalab, M. Bahrami-Saniani, P.G. Whitten, G.G. Wallace, Carbon nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv. Mater. 18, 637–640 (2006); (b) B. Boutevin, Y. Pietrasanta, Les Acrylates et Polyacrylates Fluor’es (Erec, Paris, 1989)

    Google Scholar 

  94. (a) Y. Wu, G. Alici, G.M. Spinks, G.G. Wallace, Fast trilayer polypyrrole bending actuators for high speed applications. Synth. Met. 156, 1017–1022 (2006); (b) O. Chiantore, M. Lazzari, M. Aglietto, V. Castelvetro, F. Ciardelli, Polym. Degrad, Stab. 67, 461 (2000); (c) G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, L. J. Toniolo, J. Appl. Polym. Sci. 76, 962 (2000); (d) M Lazzari, O. Chiantore, V. Castelvetro, Polym. Int. 50, 863 (2001)

    Google Scholar 

  95. (a) Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater. 18, 2619–2623 (2006); (b) S.D. Xiong, X.L. Guo, L. Li, S. Wu, P.K. Chu, Z.J. Xu, Fluor. Chem. 131, 417 (2010)

    Google Scholar 

  96. (a) N. Oyama, T. Tatsuma, T. Sato, T. Sotomura, Dimercaptan-polyaniline composite electrodes for lithium batteries with high-energy density. Nature 373, 598–600 (1995); (b) M. Obata, N. Matsuura, K. Mitsuo, H. Nagai, K. Asai, M. Harada, S. Hirohara, M. Tanihara, S.J. Yano, Polym. Sci. A: Polym. Chem. 48, 663 (2010)

    Google Scholar 

  97. (a) Y.Z. Long, J.L. Duvail, M.M. Li, C.Z. Gu, Z.W. Liu, S.P. Ringer, Electrical conductivity studies on individual conjugated polymer nanowires: Two-probe and four-probe results. Nanoscale Res. Lett. 5, 237–242 (2010); (b) E. Princi, S. Vicini, E. Pedemonte, V. Arrighi, I.J.J. McEwen, Appl. Polym. Sci. 103, 90 (2007); (c) E. Alyamac, M.D. Soucek, Prog. Org. Coat. 71, 213 (2011)

    Google Scholar 

  98. (a) Y.Z. Long, L.J. Zhang, Z.J. Chen, K. Huang, Y.S. Yang, H.M. Xiao, M.X. Wan, A.Z. Jin, C.Z. Gu, Electronic transport in single polyaniline and polypyrrole microtubes. Phys. Rev. B 71, 165412:1–165412:7 (2005); (b) G. He, G. Zhang, J. Hu, J. Sun, S. Hu, Y. Li, F. Liu, D. Xiao, H. Zou, G. J. Liu, Fluorine Chem. 132, 562 (2011); (c) S. Zhang, J. Zhao, G. Chu, L. Zhang, A. Xu, G.J. Liu, Fluorine Chem. 132, 915 (2011)

    Google Scholar 

  99. (a) L.J. Pan, L. Pu, Y. Shi, T. Sun, R. Zhang, Y.D. Zheng, Hydrothermal synthesis of polyaniline mesostructures. Adv. Funct. Mater. 16, 1279–1288 (2006); (b) S. Koizumi, K. Tadano, Y. Tanaka, T. Shimidzu, S. Kutsumizu, S. Yano, Macromolecules 95, 6563 (1992)

    Google Scholar 

  100. (a) E.S. Forzani, H.Q. Zhang, L.A. Nagahara, I. Amlani, R. Tsui, N.J.A. Tao, A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4, 1785–1788 (2004); (b) R. Gerhard-Multhaupt, Ferroelectrics 75, 385 (1987); (c) N.R. Chiou, C.M. Lui, J.J. Guan, L.J. Lee, A.J. Epstein, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2, 354–357 (2007); (d) H. Gilbert, F.F. Miller, S.J. Averill, R.F. Schmidt, F.D. Stewart, H.L. Trumbull, J. Amer. Chem. Soc. 76, 1074 (1954)

    Google Scholar 

  101. B. Conciatore, L.E. Trapasso, R.W. Stackman, Vinylidene Cyanide Polymers, in Encyclopedia of Polymer Science and Technology, vol. 14, 1st edn., (Wiley, New York, 1971), pp. 580–593

    Google Scholar 

  102. (a) S. Tasaka, T. Toyama, N. Inagaki, Ferro- and Pyroelectricity in amorphous Polyphenylethernitrile. Jap. J. Appl. Phy. 33(1), No. 10; (b) S. Miyata; M. Yoshikawa, S. Tasaka, M. Ko, Polym. J. 12, 875 (1980)

    Google Scholar 

  103. (a) Y. Patil, B. Ameduri, Advances in the (co)polymerizati on of alkyl 2-trifluoromethacrylates and 2-(trifluoromethyl)acrylic acid, Prog. Polym. Sci. 38(5), 703–739 (2013); (b) S. Tasaka, K. Miyasato, M. Yoshikawa, S. Miyata, M. Ko, Ferroelectrics 57, 267 (1984)

    Google Scholar 

  104. J.S. Harrison, Z. Ounaies, Piezoelectric Polymers; NASA/Cr2001–21142. ICASE, 2001; Report No. 43

    Google Scholar 

  105. A.F. Thünemann, Dielectric relaxation of polyacrylonitrile in its pristine and cyclized stage. Macromolecules 33, 1790–1795 (2000)

    Article  CAS  Google Scholar 

  106. (a) H. Kaji, K. Schmidt-Rohr, Conformation and dynamics of Atactic poly(acrylonitrile). 2. Torsion Angle Distributions in Meso Dyads from Two-Dimensional Solid-State Double-Quantum 13C NMR, Macromolecules, 34(21), 7368–7381 (2001); (b) H. Kaji, N. Miura, K. Shmidt-Rohr: Macromolecules 36, 6100 (2003)

    Google Scholar 

  107. (a) T.J. Lewis, Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Dielect.El. In. 11, 739–753 (2004); (b) T.J. Lewis, Interfaces: Nanometric dielectrics. J. Phys. D. Appl. Phys. 38, 202–212 (2005); (c) P. Murugaraj, D. Mainwaring, N. Mora-Huertas, Dielectric enhancement of polymernanoparticle through interphase polarizability. J. App. Phy. 98, 054304 (2005); (d) H. Hui-Lin, Y. Wei-Chang, L. Ya-Lien, Y. Tri-Rung: Appl. Phys. Lett. 91, 23501 (2007)

    Google Scholar 

  108. (a) Y. Sun, Z. Zhang, C.P. Wong, Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polym. 46, 2297–2305 (2005); (b) D.P. Almond, C.R. Bowen, D.A.S. Rees, Composite dielectrics and conductors: Simulation, characterization and design. J. Phys. D. Appl. Phys. 39, 1295–1304 (2006)

    Google Scholar 

  109. T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielec. Elec. Insul. 12, 914–928 (2005)

    Article  CAS  Google Scholar 

  110. (a) E. Tuncer, A.J. Rondinone, J. Woodward, I. Sauers, D.R. James, A.R. Ellis, Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics, Appl. Phys. A Mater. Sci. Process. 94, 843–852 (2009); (b) J.W. Gilman, T. Kashiwagi, J. Lichtenhan, Nanocomposites: A revolutionary new flame retardant approach. SMMPE J. 33(4), 40–46 (1997)

    Google Scholar 

  111. T. Tanaka, G.C. Montanari, R. Mulhaupt, Polymer nanocomposites as dielectrics and electrical insulation-perspecitve for processing technologies, material characterization and future applications. IEEE Trans. Dielec. Elec. Insul. 11, 763–784 (2004)

    Article  CAS  Google Scholar 

  112. X. Yi, H.L. Duan, Y. Chen, J. Wang, Prediction of complex dielectric constants of polymer-clay nanocomposites. Phys. Lett. A 372, 68–71 (2007)

    Article  CAS  Google Scholar 

  113. (a) N. Goulbourne, M. Frecker, E. Mockensturm, Electro-elastic modeling of a dielectric elastomer diaphragm for a prosthetic blood pump, smart structures and materials 2004: Electroactive polymer actuators and devices, in Y. Bar-Cohen, ed by, Proceedings of SPIE, San Diego, CA. vol. 5385, (2004), pp. 122–133; (b) M. Kato, A. Usuki, Polymer-clay nanocomposites, ed by T.J. Pinnavaia, G.W. Beall (Wiley, West Sussex, 2000), pp. 1–91

    Google Scholar 

  114. R. Bergman, F. Alvarez, A. Alegria, J. Colmenero, The merging of the dielectric α- and β- relaxations in poly-(methyl methacrylate). J. Chem. Phys. 109(17), 7546–7555 (1998)

    Article  CAS  Google Scholar 

  115. M. Avella, M.E. Errico, E. Martuscelli, Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process. Nano Lett. 1, 213–217 (2001)

    Article  CAS  Google Scholar 

  116. A.B.R. Mayer, Formation of noble metal nanoparticles within a polymeric matrix: Nanoparticle features and overall morphologies. Mat. Sci. Eng. C. Biomim. Mat., Sens. Syst 6, 155–166 (1998)

    Article  Google Scholar 

  117. S. Wang, M. Wang, Y. Lei, L. Zhang, Anchor effect in poly(styrene maleic anhydride)/TiO2 nanocomposites. J. Mat. Sci. Lett. 8, 2009–2012 (1999)

    Article  Google Scholar 

  118. L. Nicolais, G. Carotenuto, Metal-Polymer Nanocomposites (Wiley, Hoboken, 2005), pp. 1–83

    Google Scholar 

  119. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielec. Elect. Ins. 125, 629–642 (2005)

    Article  Google Scholar 

  120. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, A. Goyal, K. L, More: Enhancement of dielectric strength in nanocomposites. Nanotechnol. 18, 325704 (2007)

    Article  CAS  Google Scholar 

  121. J.K. Nelson, J.C. Fothergill, Internal charge behavior of. Nanocomposites. Nanotechnol. 15, 586–595 (2004)

    Article  CAS  Google Scholar 

  122. J.J. O’Dwyer, The Theory of Dielectric Breakdown of Solids (Oxford University Press, 1964), pp. 1–43

    Google Scholar 

  123. J.C. Huang, Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21, 299–313 (2002)

    Article  CAS  Google Scholar 

  124. M. Moniruzzaman, K.I. Winey, Polymer Nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  125. (a) P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. Ploehn, H. Loye, Polymer composites and nanocomposites dielectric materials for pulse power energy storage. Materials 2, 1697 (2009); (b) M. Okamoto, Polymer/clay Nanocomposites, Vol. 8 (American Scientific Publishers, Stevenson Ranch, 2004)

    Google Scholar 

  126. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  127. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010)

    Article  CAS  Google Scholar 

  128. C. Xu, X. Wang, J. Zhu, Graphene-Metal Particle Nanocomposites. J. Phys. Chem. C 112(50), 19841–19845 (2008)

    Article  CAS  Google Scholar 

  129. D. David, J. Evanoff, G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays. Chem. Phys. Chem. 6, 1221–1231 (2005)

    Article  CAS  Google Scholar 

  130. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  PubMed  Google Scholar 

  131. A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, O. Kamigaito, Synthesis and properties of nylon-6/clay hybrids, in Polymer Based Molecular Composites. Vol. 171. MRS Symposium Proceedings, ed. by D.W. Schaefer, J.E. Mark (Materials Research Society, Pittsburgh, 1990), pp. 45–50

    Google Scholar 

  132. D.Y. Godovsky, Device applications of polymer-nanocomposites. Adv. Polym. Sci. 153, 163–205 (2000)

    Article  CAS  Google Scholar 

  133. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  134. S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  CAS  Google Scholar 

  135. Z. Zhihao, Q. Shi, J. Peng, J. Song, Q. Chen, J. Yang, Y. Gong, R. Ji, X. He, J.H. Lee, Partial delamination of the organo-monmorillonite with surfactant containing hydroxyl groups in maleated poly(propylene carbonate). Polymer 47, 8548–8555 (2006)

    Article  CAS  Google Scholar 

  136. L. Peng, N.H. Kim, S. Bhadra, J.H. Lee, Electroresponsive property of novel poly(acrylate-acryloyloxyethyl trimethyl ammoniumchloride)/ clay nanocomposite hydrogels. Adv. Mater. Res. 79, 2263–2266 (2009)

    Google Scholar 

  137. L. Peng, N.H. Kim, D. Hui, K.Y. Rhee, J.H. Lee, Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated laponite. Appl. Surf. Sci. 46, 414–417 (2009)

    Google Scholar 

  138. F. Leroux, J.P. Besse, Polymer intercalated layered double hydroxide: A new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515 (2001)

    Article  CAS  Google Scholar 

  139. T. Kuila, S.K. Srivastava, A.K. Bhowmick, A.K. Saxena, Thermoplastic polyolefin based polymer-blend-layered double hydroxide nanocomposites. Compos. Sci. Technol. 68, 3234–3139 (2008)

    Article  CAS  Google Scholar 

  140. E.P. Giannelis, Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996)

    Article  CAS  Google Scholar 

  141. E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999)

    Article  CAS  Google Scholar 

  142. M. Zanetti, G. Camino, P. Reichert, R. Mulhaupt, Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromol. Rapid Commun. 22, 176–180 (2001)

    Article  CAS  Google Scholar 

  143. S. Pavlidou, C.D. Papaspyrides, A review on polymer layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  CAS  Google Scholar 

  144. H. Acharya, S.K. Srivastava, A.K. Bhowmick, Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: Structural characterization and properties. Compos. Sci. Technol. 67, 2807–2816 (2007)

    Article  CAS  Google Scholar 

  145. F.R. Costa, B.K. Satapathy, U. Wagenknechi, R. Weidisch, G. Heinrich, Morphology and fracture behaviour of polyethylene/mg-Al layered double hydroxide (LDH) nanocomposites. Eur. Polym. J. 42, 2140–2152 (2006)

    Article  CAS  Google Scholar 

  146. N.J. Garcia, J.C. Bazan, Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite. Clay Miner. 44, 81–88 (2009)

    Article  CAS  Google Scholar 

  147. F. Uddin, Clays, nanoclays, and montmorillonite minerals. Metal. Mat Trans 39, 2805–2814 (2008)

    Article  CAS  Google Scholar 

  148. Y.Z. Bao, L.F. Cong, Z.M. Huang, Z.X. Weng, Preparation and proton conductivity of poly(vinylidene fluoride)/layered double hydroxide nanocomposite gel electrolytes. J. Mater. Sci. 43, 390–394 (2008)

    Article  CAS  Google Scholar 

  149. Q. Li, O.K. Park, J.H. Lee, Positive temperature coefficient behaviour of HDPE/EVA blends filled with carbon black. Adv. Mater. Res. 79, 2267–2270 (2009)

    Article  CAS  Google Scholar 

  150. T. Jeevananda, Y.K. Jang, J.H. Lee, C. Siddaramaiah, Ranganathaiah: Investigation of multi-walled carbon nanotube reinforced high-density polyethylene/carbon black nanocomposites using electrical DSC and positron lifetime spectroscopy techniques. Polym. Int. 58, 755–780 (2009)

    Article  CAS  Google Scholar 

  151. Q. Li, N.H. Siddaramaiah, G.H. Kim, J.H.L. Yoo, Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high-density polyethylene/carbon black nanocomposites. Compos. Part B 40, 218–224 (2009)

    Article  CAS  Google Scholar 

  152. N.M. Renukappa, S.R.D. Siddaramaiah, J.S. Sudhaker, J.H.L. Rajan, Dielectric properties of carbon black: SBR composites. J. Mat. Sci. Mat. Elect. 20, 648–656 (2009)

    Article  CAS  Google Scholar 

  153. Q. Li, J.W. Kim, T.H. Shim, Y.K. Jang, J.H. Lee, Positive temperature coefficient behavior of the graphite nanofibre and carbon black filled high-density polyethylene hybrid composites. Adv. Mater. Res. 47, 226–229 (2008)

    Article  Google Scholar 

  154. W. Zhang, R.S. Blackburn, A. Dehghani-Sanij, Electrical conductivity of epoxy resin-carbon black-silica nanocomposites: Effect of silica concentration and analysis of polymer curing reaction by FTIR. Scrip. Mat. 57, 949–952 (2007)

    Article  CAS  Google Scholar 

  155. K. Chrissafis, K.M. Paraskevopoulos, S.Y. Stavrev, A. Docoslis, A. Vassiliou, D.N. Bikiaris, Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermoch. Act. 465, 6–17 (2007)

    Article  CAS  Google Scholar 

  156. H. Wang, H. Zhang, W. Zhao, W. Zhang, G. Chen, Preparation of polymer/oriented graphite nanosheet composite by electric field inducement. Compos. Sci. Technol. 68, 238–243 (2008)

    Article  CAS  Google Scholar 

  157. A. Yu, P. Ramesh, M.E. Itkis, B. Elena, R.C. Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)

    Article  CAS  Google Scholar 

  158. B. Debelak, K. Lafdi, Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45, 1727–1734 (2007)

    Article  CAS  Google Scholar 

  159. X. Chen, Y.P. Zheng, F. Kang, W.C. Shen, Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite. J. Phys. Chem. Sol. 67, 1141–1144 (2006)

    Article  CAS  Google Scholar 

  160. S. Mazinani, A. Ajji, C. Dubois, Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polym. 50, 3329–3342 (2009)

    Article  CAS  Google Scholar 

  161. Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. Part A 39, 1876–1883 (2008)

    Article  CAS  Google Scholar 

  162. S.H. Liao, C.Y. Yen, C.C. Weng, Y.F. Lin, C.C.M. Ma, C.H. Yang, M.C. Tsai, M.Y. Yen, M.C. Hsiao, S.J. Lee, X.F. Xie, Y.H. Hsiao, Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J. Pow. Sour. 185, 1225–1232 (2008)

    Article  CAS  Google Scholar 

  163. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Article  CAS  Google Scholar 

  164. O.K. Park, T. Jeevananda, N.H. Kim, S. Kim, J.H. Lee, Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scrip. Mat. 60, 551–554 (2009)

    Article  CAS  Google Scholar 

  165. T. Jeevananda, N.H. Siddaramaiah, S.B. Kim, J.H.L. Hoe, Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate. Polym. Adv. Technol. 19, 1–9 (2008)

    Article  CAS  Google Scholar 

  166. T. Jeevananda, T.S. Siddaramaiah, O.M. Lee, R. Samir, J.H.L. Somashekar, Polyaniline-multiwalled carbon nanotubes composites: Characterization by WAXS and TGA. J. Appl. Polym. Sci. 108, 25–34 (2008)

    Article  CAS  Google Scholar 

  167. C.E. Hong, K. Prashantha, S.G. Advani, J.H. Lee, Effects of oxidative conditions on properties of multi-wall carbon nanotubes of polymer nanocomposites. Compos. Sci. Technol. 67, 1027–1034 (2007)

    Article  CAS  Google Scholar 

  168. S.K. Kim, N.H. Kim, J.H. Lee, Effects of the addition of multiwalled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high density polyethylene nanocomposites. Scrip. Mat. 55, 1119–1122 (2006)

    Article  CAS  Google Scholar 

  169. V. Khanna, B.R. Bakshi, Carbon nanofiber polymer composites: Evaluation of life cycle energy use. Environ. Sci. Technol. 43, 2078–2084 (2009)

    Article  CAS  PubMed  Google Scholar 

  170. G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67, 1709–1718 (2007)

    Article  CAS  Google Scholar 

  171. M. Chipara, K. Lozano, A. Hernandez, M. Chipara, TGA analysis of polypropylene-carbon nanofibers composites. Polym. Degrad. Stab. 93, 871–876 (2008)

    Article  CAS  Google Scholar 

  172. S. Ansari, E.P. Giannelis, Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. Part B Polym. Phys. 47, 888–897 (2009)

    Article  CAS  Google Scholar 

  173. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)

    Article  CAS  PubMed  Google Scholar 

  174. Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys. 210, 1247–1254 (2009)

    Article  CAS  Google Scholar 

  175. Y. Xu, Y. Wang, L. Jiajie, Y. Huang, Y. Ma, X. Wan, Y. Chen, A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2, 343–348 (2009)

    Article  CAS  Google Scholar 

  176. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One step ionic-liquid assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv. Funct. Mat. 18, 1518–1525 (2008)

    Article  CAS  Google Scholar 

  177. J.E. Allison, G.S. Cole, Metal-matrix composites in the automotive industry: Opportunities and challenges. JOM 45(1), 19–24 (1993)

    Article  CAS  Google Scholar 

  178. S. Alwarappan, A. Kumar, Graphene-Based Materials: Science and Technology (CRC Press, Taylor & Francis Group, 2014), pp. 2–89

    Book  Google Scholar 

  179. B. An, L. Li, H. Li, Electrodeposition in the Ni-plating bath containing multi-walled carbon nanotubes. Mat. Chem. Phys. 110, 481–485 (2008)

    Article  CAS  Google Scholar 

  180. S. Arai, Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42, 641–644 (2004)

    Article  CAS  Google Scholar 

  181. S. Arai, M. Endo, Various carbon nanofiber–copper composite films prepared by electrodeposition. Electrochem. Commun. 7(1), 19–22 (2005)

    Article  CAS  Google Scholar 

  182. D.J. Blackwood et al., Corrosion behaviour of porous titanium–graphite composites designed for surgical implants. Corros. Sci. 42(3), 481–503 (2000)

    Article  CAS  Google Scholar 

  183. E. Breval, Synthesis routes to metal matrix composites with specific properties: A review. Compos. Eng. 5(9), 1127–1133 (1995)

    Article  CAS  Google Scholar 

  184. A.R. Bunsell, J. Renard, Fundamentals of Fibre Reinforced Composite Materials (IOP Publishing, 2005)

    Google Scholar 

  185. V.V. Ivanov et al., Synergistic effect in nickel-Teflon composite electrolytic coatings. Rus. J. Appl. Chem. 81(12), 2169–2171 (2009)

    Article  CAS  Google Scholar 

  186. A. Hovestad, L.J.J. Janssen, Electroplating of metal matrix composites by Codeposition of suspended particles, in Modern Aspects of Electrochemistry No.38, (Kluwer Academic Publishers, New York, 2005)

    Google Scholar 

  187. J. Koráb, P. Štefánik, Š. Kavecký, P. Šebo, G. Korb, Thermal conductivity of unidirectional copper matrix carbon fibre composites. Composites Part A: Appl. Sci. Manufac. 33(4), 577–581 (2002)

    Article  Google Scholar 

  188. T. Tanaka, G.C. Montanari, R. Mulhaupt, Polymer nanocomposites as dielectrics and electrical insulation - perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 11(5), 763–784 (2004)

    Article  CAS  Google Scholar 

  189. T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Transac. Dielec. Elect. Insul. 12, 914–928 (2005)

    Article  CAS  Google Scholar 

  190. G. Banhegy, Comparison of electrical mixture rules for composites. Coll. Polym. Sci. 264, 1030–1050 (1986)

    Article  Google Scholar 

  191. P. Bowen, J.G. Highfield, A. Mocellin, T.A. Ring, Degradation of aluminum nitride powder in aqueous environment. J. Am. Ceram. Soc. 73(3), 724–728 (1990)

    Article  CAS  Google Scholar 

  192. L. Qiu, R. Xie, P. Ding, B. Qu, Preparation and characterisation of mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with eva. Compos. Struct. 62, 391–395 (2003)

    Article  Google Scholar 

  193. M. Okoshi, H. Nishizawa, Flame retardency of nanocomposites. Fir. Mater. 28, 423–429 (2004)

    Article  CAS  Google Scholar 

  194. L.A. Fredin, Z. Li, M.T. Lanagan, M.A. Ratner, T.J. Marks, Sustainable high capacitance at high frequencies: Metallic aluminum - polypropylene Nanocomposites. ACS Nano 7, 396–407 (2013)

    Article  CAS  PubMed  Google Scholar 

  195. D. Pitsa, G. Vardakis, M.G. Danikas, M. Kozako, Electrical treeing Propa-gation in Nanocomposites and the role of Nanofillers: Simulation with the aid of cellular automata. J. Electric. Engineer. –Elektrotech. Casop. 61, 125–128 (2010)

    Google Scholar 

  196. C.A. Grabowski, S.P. Fillery, N.M. Westing, C. Chi, J.S. Meth, M.F. Durstock, R.A. Vaia, Dielectric breakdown in silica-amorphous polymer Nanocomposite films: The role of the polymer matrix. ACS Appl. Mater. Interfaces 5, 5486–5492 (2013)

    Article  CAS  PubMed  Google Scholar 

  197. S. Siddabattuni, T.P. Schuman, F. Dogan, Dielectric properties of polymer-particle Nanocomposites influenced by electronic nature of filler surfaces. ACS Appl. Mater. Interfaces 5, 1917–1927 (2013)

    Article  CAS  PubMed  Google Scholar 

  198. J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, S.S. Sternstein, M.J. Buehler, Current issues in research on structure-property relationships in polymer Nanocomposites. Polymer 51, 3321–3343 (2010)

    Article  CAS  Google Scholar 

  199. A. Okada, A. Usuki, Twenty years of polymer-clay Nanocomposites. Macromol. Mater. Eng. 291, 1449–1476 (2006)

    Article  CAS  Google Scholar 

  200. D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites. Polymer 49, 3187–3204 (2008)

    Article  CAS  Google Scholar 

  201. M.Z. Rong, M.Q. Zhang, W.H. Ruan, Surface modification of Nanoscale fillers for improving properties of polymer Nanocomposites: A review. Mater. Sci. Technol. 22, 787–796 (2006)

    Article  CAS  Google Scholar 

  202. D.W. Schaefer, R.S. Justice, How nano are nanocomposites? Macromolecules 40, 8501–8517 (2007)

    Article  CAS  Google Scholar 

  203. S.C. Tjong, Structural and mechanical properties of polymer Nanocomposites. Mater. Sci. Eng.:R. 53, 73–197 (2006)

    Article  CAS  Google Scholar 

  204. C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62, 1327–1340 (2002)

    Article  CAS  Google Scholar 

  205. S.-W. Kuo, F.-C. Chang, POSS related polymer Nanocomposites. Prog. Polym. Sci. 36, 1649–1696 (2011)

    Article  CAS  Google Scholar 

  206. E. Ayandele, B. Sarkar, P. Alexandridis, Polyhedral Oligomeric Silsesqui-oxane (POSS)-containing polymer Nanocomposites. Nano 2, 445–475 (2012)

    CAS  Google Scholar 

  207. B.X. Fu, M.Y. Gelfer, B.S. Hsiao, S. Phillips, B. Viers, R. Blanski, P. Ruth, Physical gelation in ethylene–propylene copolymer melts induced by Polyhe-dral Oligomeric Silsesquioxane (POSS) molecules. Polymer 44, 1499–1506 (2003)

    Article  CAS  Google Scholar 

  208. M. Pracella, D. Chionna, A. Fina, D. Tabuani, A. Frache, G.i. Camino, Pol-ypropylene-POSS Nanocomposites: Morphology and crystallization behaviour. Macromol. Symp. 234, 59–67 (2006)

    Article  CAS  Google Scholar 

  209. F. Baldi, F. Bignotti, A. Fina, D. Tabuani, T. Ricco, Mechanical Characteriza-tion of polyhedral Oligomeric Silsesquioxane/polypropylene blends. J. Appl. Polym. Sci. 105, 935–943 (2007)

    Article  CAS  Google Scholar 

  210. A. Fina, D. Tabuani, A. Frache, G. Camino, Polypropylene-polyhedral Oli-gomeric Silsesquioxanes (POSS) Nanocomposites. Polymer 46, 7855–7866 (2005)

    Article  CAS  Google Scholar 

  211. C.Y. Jung, H.S. Kim, H.J. Hah, S.M. Koo, Self-assembly growth process for polyhedral Oligomeric Silsesquioxane cubic crystals. Chem. Commun. (Cambridge, U. K.) 10, 1219–1221 (2009)

    Article  CAS  Google Scholar 

  212. M. Joshi, B.S. Butola, Isothermal crystallization of HDPE/Octamethyl pol-yhedral Oligomeric Silsesquioxane Nanocomposites: Role of POSS as a Nano-filler. J. Appl. Polym. Sci. 105, 978–985 (2007)

    Article  CAS  Google Scholar 

  213. M. Takala, M. Karttunen, P. Salovaara, S. Kortet, K. Kannus, T. Kalliohaka, Dielectric properties of nanostructured polypropylene- polyhedral Oligomeric Silsesquioxane compounds. IEEE Trans. Dielectr. Electr. Insul. 15, 40–51 (2008)

    Article  CAS  Google Scholar 

  214. J. Horwath, D. Schweickart, G. Garcia, D. Klosterman, M. Galaska: Im-proved performance of Polyhedral Oligomeric Silsesquioxane Epoxies, Electrical Insulation and Dielectric Phenomena, CEIDP ’05. Annual Report Conference on (2005). pp. 155–157

    Google Scholar 

  215. J.I. Weon, K.T. Gam, W.J. Boo, H.J. Sue, C.M. Chan, Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene Nanocomposite. J. Appl. Polym. Sci. 99, 3070–3076 (2006)

    Article  CAS  Google Scholar 

  216. M.-R. Meng, Q. Dou, Effect of filler treatment on crystallization, Mor-phology and mechanical properties of polypropylene/calcium carbonate composites. J. Macromol. Sci. B: Phys. 48, 213–225 (2009)

    Article  CAS  Google Scholar 

  217. M.Y.A. Fuad, H. Hanim, R. Zarina, Z.A.M. Ishak, A. Hassan, Polypro-pylene/calcium carbonate Nanocomposites - effects of processing techniques and Maleated polypropylene Compatibiliser. Expr. Polym. Let. 4, 611–620 (2010)

    Article  CAS  Google Scholar 

  218. H. Huang, B. Han, L. Wang, N. Miao, H. Mo, N.-L. Zhou, Z.-M. Ma, J. Zhang, J. Shen, Crystallization kinetics of polypropylene composites filled with Nano calcium carbonate modified with maleic anhydride. J. Appl. Polym. Sci. 119, 1516–1527 (2011)

    Article  CAS  Google Scholar 

  219. D. Eiras, L.A. Pessan, Mechanical properties of polypropylene/calcium carbonate Nanocomposites. Mat. Res. 12, 517–522 (2009)

    Article  CAS  Google Scholar 

  220. B. Cioni, A. Lazzeri, The role of interfacial interactions in the toughening of precipitated calcium carbonate-polypropylene Nanocomposites. Compos. Inter. 17, 533–549 (2010)

    Article  CAS  Google Scholar 

  221. P. Eteläaho, S. Haveri, P. Järvelä, Comparison of the morphology and me-chanical properties of unmodified and surface-modified Nanosized calcium carbonate in a polypropylene matrix. Polym. Compos. 32, 464–471 (2011)

    Article  CAS  Google Scholar 

  222. Y. Lin, H. Chen, C.-M. Chan, J. Wu, Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 Nanocompo-sites. Eur. Pol. J. 47, 294–304 (2011)

    Article  CAS  Google Scholar 

  223. M. Kamal, C.S. Sharma, P. Upadhyaya, V. Verma, K.N. Pandey, V. Kumar, D.D. Agrawal, Calcium carbonate (CaCO3) nanoparticle filled polypro-pylene: Effect of particle surface treatment on mechanical, thermal, and Mor-phological performance of composites. J. Appl. Polym. Sci. 124, 2649–2656 (2012)

    Article  CAS  Google Scholar 

  224. Y. Li, P. Tao, A. Viswanath, B.C. Benicewicz, L.S. Schadler, Bimodal Sur-face ligand engineering: The key to tunable Nanocomposites. Langmuir 29, 1211–1220 (2013)

    Article  PubMed  CAS  Google Scholar 

  225. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 Nanocomposites with high refractive index and trans-parency. J. Mater. Chem. 21, 18623–18629 (2011)

    Article  CAS  Google Scholar 

  226. F. Carpi, C. Salaris, D.D. Rossi, Folded dielectric elastomer actuators. Smart Mater. Struct. 16, S300–S305 (2007)

    Article  CAS  Google Scholar 

  227. D. Gatti, H. Haus, M. Matysek, B. Frohnapfel, C. Tropea, H.F. Schlaak, The dielectric breakdown limit of silicone dielectric elastomer actuators. Appl. Phys. Lett. 104, 052905 (2014)

    Article  CAS  Google Scholar 

  228. S.M. Ha, W. Yuan, Q. Pei, R. Pelrine, S. Stanford, Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv. Mater. 18, 887–891 (2006)

    Article  CAS  Google Scholar 

  229. R. Heydt, R. Kornbluh, J. Eckerle, R. Pelrine, Sound radiation properties of dielectric elastomer electroactive polymer loadspeakers. Proc. SPIE 6168, 61681M (2006)

    Article  Google Scholar 

  230. J. Huang, S. Shian, R.M. Diebold, Z. Suo, D.R. Clarke, The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer. Appl. Phys. Lett. 101, 122905 (2012)

    Article  CAS  Google Scholar 

  231. J. Huang, T. Lu, J. Zhu, D.R. Clarke, Z. Suo, Large, unidirectional actuation in dielectric elastomers achieved by fiber stiffening. Appl. Phys. Lett. 100, 211901 (2012)

    Article  CAS  Google Scholar 

  232. J. Huang, S. Shian, Z. Suo, D.R. Clarke, Maximizing the energy density of dielectric elastomer generators using equibiaxial laoding. Adv. Funct. Mater. 23, 5056–5061 (2013)

    Article  CAS  Google Scholar 

  233. R. Huang, Z. Suo, Electromechanical phase transition in dielectric elastomers. Proc. R. Soc. A 468, 1014–1040 (2011)

    Article  Google Scholar 

  234. R. Karsten, K. Flittner, H. Haus, H.F. Schlaak, Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation. Proc. SPIE 8687, 86870Y (2013)

    Article  Google Scholar 

  235. C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Rontgen’s electrode free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. U. S. A. 107, 4505–4510 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Harnessing snap through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Mat 8, 285–288 (2012)

    Article  CAS  Google Scholar 

  237. Y. Hu, R.C. Smith, J.K. Nelson, L.S. Schadler, Some mechanistic understanding of the impulse strength of nanocomposites. IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP) (2006) pp. 31–34

    Google Scholar 

  238. M. Kozako, S. Yamano, R. Kido, Y. Ohki, M. Kohtoh, S. Okabe, T. Tanaka, Preparation and Preliminary Characteristic Evaluation of Epoxy/Alumina Nanocomposites, Intern. Sympos. Electr. Insulating Materials (ISEIM) (2005) 231–234

    Google Scholar 

  239. T. McKay, B. O’Brien, E. Calius, I. Anderson, An integrated, self-priming dielectric elastomer generator. Appl. Phys. Lett. 97, 062911 (2010)

    Article  CAS  Google Scholar 

  240. A. O’Halloran, F. O’Malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications and challenges. J. Appl. Phys. 104, 071101 (2008)

    Article  CAS  Google Scholar 

  241. R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A 64, 77–85 (1998)

    Article  CAS  Google Scholar 

  242. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with greater than 100%. Science 287, 836–839 (2000)

    Article  CAS  PubMed  Google Scholar 

  243. R. Pelrine, R.D. Kornbluh, Q. Pei, S. Stanford, S. Oh, J. Eckerle, R. Full, M. Rosenthal, K. Meijer, Dielectric elastomer artificial muscle actuators: Toward biomimetic motion. Proc. SPIE 4695, 126–137 (2002)

    Article  CAS  Google Scholar 

  244. J. Plante, S. Dubowsky, Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids Struct. 43, 7727–7751 (2006)

    Article  CAS  Google Scholar 

  245. J. Plante, S. Dubowsky, On the performance mechanisms of dielectric elastomer actuators. Sens. Actuat. A 137, 96–109 (2007)

    Article  CAS  Google Scholar 

  246. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezo-ceramics. Nature 432, 84–87 (2004)

    Article  CAS  PubMed  Google Scholar 

  247. J. Sheng, H. Chen, B. Li, L. Chang, Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Appl. Phys. A Mater. Sci. Process. 110, 511–515 (2013)

    Article  CAS  Google Scholar 

  248. A. Trols, A. Kogler, R. Baumgartner, R. Kaltseis, C. Keplinger, R. Schwodiauer, I. Graz, S. Bauer, Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers. Smart Mater. Struct. 22, 104012 (2013)

    Article  CAS  Google Scholar 

  249. M. Wissler, E. Mazza, Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actuators A 134, 494–504 (2007)

    Article  CAS  Google Scholar 

  250. X.Q. Zhang, M. Wissler, B. Jaehne, R. Broennimann, G. Kovacs, Effects of crosslinking, prestrain and dielectric filler on the electromechanical response of a new silicone and comparison with acrylic elastomer. Proc. SPIE 5385, 78–86 (2004)

    Article  CAS  Google Scholar 

  251. X. Zhao, Z. Suo, Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 178302 (2010)

    Article  PubMed  CAS  Google Scholar 

  252. G. Kofod, P. Sommer-Larsen, R. Kornbluh, R. Pelrine, Actuation response of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 24, 1667–1674 (2003)

    Google Scholar 

  253. S.J.A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, Z. Suo, Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. B 49, 504–515 (2011)

    Article  CAS  Google Scholar 

  254. M. Kollosche, G. Kofod, Z. Suo, J. Zhu, Temporal evolution and instability in a viscoelastic dielectric elastomer. J. Mech. Phys. Solids 76, 47–64 (2015)

    Article  Google Scholar 

  255. M. Kollosche, J. Zhu, Z. Suo, G. Kofod, Complex interplay of nonlinear processes in dielectric elastomers. Phys. Rev. E 85, 051801 (2012)

    Article  CAS  Google Scholar 

  256. R. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field electrostriction of elastomeric polymer dielectrics for actuation. Proc. SPIE 3669, 149–161 (1999)

    Article  CAS  Google Scholar 

  257. (a) R. Shankar, A.K. Krishnan, T. K. Ghosh, R.J. Spontak, Triblock copolymer organogels as high-performance dielectric elastomers. Macromolecules 41, 6100–6109 (2008); (b) G.G. Raju, Dielectrics in Electric Field (Marcel Dekker Inc, New York, 2003)

    Google Scholar 

  258. A.A. Vorob’ev, Excitation and electrical breakdown of solid insulators. Russ. Phys. J. 23, 382–386 (1980)

    Google Scholar 

  259. I. Bunget, M. Popescu, Physics of Solid Dielectrics, vol 19 (Elsevier, Amsterdam, 1984)

    Google Scholar 

  260. E. Kuffel, W.S. Zaengl, High Voltage Engineering Fundamental (Pergamon, New York, 1984)

    Google Scholar 

  261. J. Artbauer, Electric strength of polymers. J. Phys. D. Appl. Phys. 29, 446–456 (1996)

    Article  CAS  Google Scholar 

  262. M.H. Sabuni, J.K. Nelson, The effects of plasticizer on the electric strength of polystyrene. J. Mater. Sci. 14, 2791–2796 (1979)

    Article  CAS  Google Scholar 

  263. T. Imai, F. Sawa, T. Ozaki, Y. Inoue, T. Shimizu, T. Tanaka, Comparison of insulation breakdown properties of epoxy nanocomposites under homogeneous and divergent electric fields, IEEE Conf. Electr. Insul. Dielectr.Phenomena (CEIDP) (2006), pp. 306–309

    Google Scholar 

  264. I.L. Hosier, A.S. Vaughan, S.G. Swingler, The effects of measuring techniques and sample preparation on the breakdown strength of polyethylene. IEEE Dielect. El. In. 9, 353–361 (2002)

    Article  CAS  Google Scholar 

  265. A. Schneuwly, P. Groning, L. Schlapbach, C. Irrang, J. Vogt, Breakdown behavior of oilimpregnated polyproplyene as dielectric in film capacitors. IEEE Dielect. El. In. 5, 862–868 (1998)

    Article  CAS  Google Scholar 

  266. A.E. Job, N. Alves, M. Zanin, M.M. Ueki, L.H. Mattoso, M.Y. Teruya, J.A. Giacometti, Increasing the dielectric breakdown strength of poly(ethylene terephthalate) films using a coated polyaniline layer. J. Phys. D. Appl. Phys. 36, 1414–1417 (2003)

    Article  CAS  Google Scholar 

  267. V.A. Zakrevski, N.T. Sudar, A. Zappo, Y.A. Dubitsky, Mechanism of electrical degradation and breakdown of insulating polymers. J. Appl. Phys. 93, 2135–2139 (2003)

    Article  CAS  Google Scholar 

  268. M. Ieda, Dielectric breakdown process of polymers. IEEE Electr. Insul. 15, 206–224 (1980)

    Article  Google Scholar 

  269. (a) Y. Shen, Y. Lin, M. Li, C.W. Nan, High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 19, 1418–1422 (2007); (b) E. Tuncer, A.J. Rondinone, J. Woodward, I. Sauers, D.R. James, A.R. Ellis, Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics, Appl. Phys. A Mater. Sci. Process. 94, 843–852 (2009)

    Google Scholar 

  270. G. Chen, A.E. Davies, The influence of defects on the short-term breakdown characteristics and long-term dc performance of LDPE insulation. IEEE Dielect. El. In. 7, 401–407 (2000)

    Article  CAS  Google Scholar 

  271. (a) T.J. Lewis, Nanometric dielectrics. IEEE Dielect. El. In. 1, 812–825 (1994); (b) T. Tanaka, M. Kozaka, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Dielect. El. In. 12, 669–681 (2005)

    Google Scholar 

  272. T. Tanaka, G.C. Montanari, R. Mulhaupt, Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization, and future applications. IEEE Dielect. El. In. 11, 763–784 (2004)

    Article  CAS  Google Scholar 

  273. D. Ma, T.A. Hugener, R.W. Siegel, A. Christerson, E. Martensson, C. Onneby, L. Schadler, Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites. Nanotechnol. 16, 724–731 (2005)

    Article  CAS  Google Scholar 

  274. G.C. Montanari, D. Fabiani, F. Palmieri, D. Kaempfer, R. Thomann, R. Mulhaupt, Modification of electrical properties and perfomance of EVA and PP insulation through nanostructure by organophillic silicates. IEEE Dielect. El. In 11, 754–762 (2004)

    Article  CAS  Google Scholar 

  275. R.C. Smith, C. Liang, M. Landry, J.K. Nelson, L.S. Schadler, The mechanisms leading to the useful electrical properties of polmyer nanodielectrics. IEEE Dielect. El. In. 15, 187–196 (2008)

    Article  CAS  Google Scholar 

  276. P.J. Kim, C. Simon, P.J. Hotchkiss, N. Joshua, B. Kippelen, S.R. Marder, J.W. Perry, Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19, 1001–1005 (2007)

    Article  CAS  Google Scholar 

  277. J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, Q. Wang, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 (2008)

    Article  CAS  Google Scholar 

  278. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 42, 3789–3799 (2007)

    Article  CAS  Google Scholar 

  279. F. Guan, J. Wang, L. Yang, J.–.K. Tseng, K. Han, Q. Wang, L. Zhu, Confinement-induced high-field Antiferroelectric-like behavior in a poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules 44, 2190–2199 (2011)

    Article  CAS  Google Scholar 

  280. F. Guan, J. Pan, J. Wang, Q. Wang, L. Zhu, Crystal orientation effect on electric energy storage in poly (vinylidene fluoride-co-hexafluoropropylene) copolymers. Macromolecules 43, 384–392 (2010)

    Article  CAS  Google Scholar 

  281. F. Guan, J. Wang, J. Pan, Q. Wang, L. Zhu, Effects of polymorphism and crystallite size on dipole reorientation in poly (vinylidene fluoride) and its random copolymers. Macromolecules 43, 6739–6748 (2010)

    Article  CAS  Google Scholar 

  282. (a) E. Allahyarov, H. Löwen, L. Zhu, Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions. Phys. Chem. Chem. Phys. (2016) Advance Article; (b) L. Zhu, Q. Wang, Macromolecules 45, 2937 (2012)

    Google Scholar 

  283. Y. Zou, L. Han, G. Yuan, B. Liu, X. Zhao, B. Tian, J. Wang, S. Sun, J. Sun, X. Meng, Enhancedferroelectric and dielectric properties of the P(VDF-TrFE)/Ag nanoparticles composite thin films. J. Mater. Sci. Mat. 25, 3461–3465 (2014)

    Article  CAS  Google Scholar 

  284. (a) P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C.Z. Loye, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2, 1697–1733 (2009); (b) O. Chiantore, M. Lazzari, M. Aglietto, V. Castelvetro, F. Ciardelli, Polym. Degrad. Stab. 67, 461 (2000). (c) G. Alessandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, L. Toniolo, J. Appl. Polym. Sci. 76, 962 (2000); (d) M. Lazzari, O. Chiantore, V. Castelvetro Polym. Int. 50, 863 (2001)

    Google Scholar 

  285. (a) L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 23, 3751–3769 (2011); (b) S.D. Xiong, X.L. Guo, L. Li, S. Wu, P.K. Chu, Z. Xu, J. Fluor. Chem. 131, 417 (2010)

    Google Scholar 

  286. (a) J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, Q. Wang, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles, Chem. Mater. 20, 6304–6306 (2008); (b) M. Obata, N. Matsuura, K. Mitsuo, H. Nagai, K. Asai, M. Harada, S. Hirohara, Ma Tanihara, S. Yano, J. Polym. Sci. A Polym. Chem. 48, 663 (2010)

    Google Scholar 

  287. (a) X. Hao, J. Zhai, X. Yao: Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films, J. Am. Ceram. Soc. 92, 1133–1135 (2009); (b) E. Princi, S. Vicini, E. Pedemonte, V. Arrighi, I.J. McEwen, J. Appl. Polym. Sci. 103, 90 (2007); (b) E. Alyamac, M.D. Soucek, Prog. Org. Coat. 71, 213 (2011)

    Google Scholar 

  288. (a) B. Ma, D.K. Kwon, M. Narayanan, U. Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 24, 2993–2996 (2009); (b) G. He, G. Zhang, J. Hu, J. Sun, S. Hu, Y. Li, F. Liu, D. Xiao, H. Zou, G. Liu, J. Fluor. Chem. 132, 562 (2011); (c) S. Zhang, J. Zhao, G. Chu, L. Zhang, A. Xu, G. Liu, J. Fluor. Chem. 132, 915 (2011)

    Google Scholar 

  289. (a) K.J. Choi, M. Biegalski, Y. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. Chen, X. Pan, V. Gopalan, Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004); (b) S. Koizumi, K. Tadano, Y. Tanaka, T. Shimidzu, S. Kutsumizu, S. Yano, Macromolecules 95, 6563 (1992)

    Google Scholar 

  290. P. Tsotra, O. Gryshchuk, K. Friedrich, Morphological studies of epoxy/polyaniline blends. Macromol. Chem. Phys. 206, 787–793 (2005)

    Article  CAS  Google Scholar 

  291. P. Dutta, S. Biswas, S.K. De, Dielectric relaxation in polyaniline-polyvinyl alcohol composites. Mater. Res. Bul. 37, 193–200 (2002)

    Article  CAS  Google Scholar 

  292. C. Chwang, C. Liu, S. Huang, D. Chao, S. Lee, Synthesis and characterization of high dielectric constant polyaniline/polyurethane blends. Synth. Met. 142, 275–281 (2004)

    Article  CAS  Google Scholar 

  293. W.C. Chiou, D.Y. Yang, J.L. Han, S.N. Lee, Synthesis and characterization of composites of polyaniline and polyurethane-modified epoxy. Polym. Intern. 55, 1222–1229 (2006)

    Article  CAS  Google Scholar 

  294. M. Tabellout, K. Fatyeyeva, P.-Y. Baillif, J.-F. Bardeau, A.A. Pud, The influence of the polymer matrix on the dielectric and electrical properties of conductive polymer composites based on polyaniline. J. Non-Cryst. Sol. 351, 2835–2841 (2005)

    Article  CAS  Google Scholar 

  295. N. Kohut-Svelko, F. Dinant, S. Magana, G. Clisson, J. Francois, C. Dagron-Lartigau, S. Reynaud, Overview of the preparation of pure polyaniline and conductive composites in dispersed media and by thermal processes: From laboratory to semiindustrial scale. Polym. Intern. 55, 1184–1190 (2006)

    Article  CAS  Google Scholar 

  296. H. Deligoz, B. Tieke, Conducting composites of polyurethane resin and polypyrrole: Solvent-free preparation, electrical, and mechanical properties. Macromol. Mat. Engin. 291, 793–801 (2006)

    Article  CAS  Google Scholar 

  297. V.X. Moreira, F.G. Garcia, B.G. Soares, Conductive epoxy/amine system containing polyaniline doped with dodecylbenzenesulfonic acid. J. Appl. Polym. Sci. 100, 4059–4065 (2006)

    Article  CAS  Google Scholar 

  298. X. Yang, T. Zhao, Y. Yu, Y. Wei, Synthesis of conductive polyaniline/epoxy resin composites: Doping of the interpenetrating network. Synth. Met. 142, 57–61 (2004)

    Article  CAS  Google Scholar 

  299. W. Łuzny, E. Banka, Relations between the structure and electric conductivity of polyaniline protonated with camphorsulfonic acid. Macromolecules 33, 425–429 (2000)

    Article  CAS  Google Scholar 

  300. M.G. Han, S.S. Im, Morphological study of conductive polyaniline/polyimide blends. I. Determination of compatibility by small-angle X-ray scattering method. Polym. 42, 7449–7454 (2001)

    Article  CAS  Google Scholar 

  301. J. Jang, J. Bae, K. Lee, Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polym. 46, 3677–3684 (2005)

    Article  CAS  Google Scholar 

  302. Q.H. Yang, S.G. Wei, G.X. Cheng, Preparation of conductive polyaniline/epoxy composite. Polym. Compos. 27, 201–204 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Mohammed Reduwan Billah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Billah, S.M. (2018). Dielectric Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics