Skip to main content

Proton Conductions

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

The importance of proton conductivity is enormous for biological systems and in devices such as electrochemical sensors, electrochemical reactors, electrochromic devices, and fuel cells. In the book chapter, the phenomenon of proton conductivity in materials was discussed with a special emphasis on five different types of conductive materials, namely, perfluorinated ionomers, partially fluorinated, aromatic polymers, acid-base complexes, non-fluorinated ionomers, and hydrocarbon. In a fuel cell, the proton exchange membranes (PEMs) have a profound influence on its performance. Many researchers have investigated the functionalization methods to solve the methanol crossover problem and to obtain low electronic conductivity, low electroosmotic drag coefficient, good mechanical properties, good chemical stability, good thermal stability, and high proton conductivity. The way forward of developing high-performance proton-conductive polymeric membrane via electrospinning for as fuel cells was also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. B. Beden, J.M. Léger, C. Lamy, Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, in Modern Aspects of Electrochemistry, (Springer US, Boston, 1992), pp. 97–264

    Google Scholar 

  2. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). Springer US

    Article  CAS  Google Scholar 

  3. W. Jaegermann, Surface studies of layered materials in relation to energy converting interfaces, in Photoelectrochemistry and Photovoltaics of Layered Semiconductors, (Springer Netherlands, Dordrecht, 1992), pp. 195–295

    Chapter  Google Scholar 

  4. L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 39(8), 1157–1162 (2009)

    Article  CAS  Google Scholar 

  5. M.M. Nasef, E.S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 29(6), 499–561 (2004)

    Article  CAS  Google Scholar 

  6. B. Salehi, M. Salehi, K. Nsirnia, P. Soltani, M. Adalatnaghad, N. Kalantari, S. Moghaddam, The effects of selected relaxing music on anxiety and depression during hemodialysis: A randomized crossover controlled clinical trial study. Arts Psychother. 48, 76–80 (2016)

    Article  Google Scholar 

  7. A. Pannese, M.-A. Rappaz, D. Grandjean, Metaphor and music emotion: Ancient views and future directions. Conscious. Cogn. 44, 61–71 (2016)

    Article  PubMed  Google Scholar 

  8. P. Jannasch, Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8(1), 96–102 (2003)

    Article  CAS  Google Scholar 

  9. R. Murali, A. Eisenberg, Ionic miscibility enhancement in poly (tetrafluoroethylene)/poly (ethyl acrylate) blends. I. Dynamic mechanical studies. J. Polym. Sci. B Polym. Phys. 26(7), 1385–1396 (1988)

    Article  CAS  Google Scholar 

  10. H. Park, Y. Kim, W.H. Hong, Y.S. Choi, H. Lee, Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38(6), 2289–2295 (2005)

    Article  CAS  Google Scholar 

  11. Y.S. Park, Y. Yamazaki, Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polym. Bull. 53(3), 181–192 (2005)

    Article  CAS  Google Scholar 

  12. K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics 97(1), 1–15 (1997)

    Article  CAS  Google Scholar 

  13. D.E. Moilanen, D.B. Spry, M.D. Fayer, Water dynamics and proton transfer in Nafion fuel cell membranes. Langmuir 24(8), 3690–3698 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. S.H. Park, J.S. Park, S.D. Yim, S.H. Park, Y.M. Lee, C.S. Kim, Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol–gel process. J. Power Sources 181(2), 259–266 (2008)

    Article  CAS  Google Scholar 

  15. D. Yang, J. Li, Z. Jiang, L. Lu, X. Chen, Chitosan/TiO 2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 64(13), 3130–3137 (2009)

    Article  CAS  Google Scholar 

  16. K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001)

    Article  CAS  Google Scholar 

  17. B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications – A review. J. Membr. Sci. 259(1), 10–26 (2005)

    Article  CAS  Google Scholar 

  18. J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145(2), 199–209 (1998)

    Article  CAS  Google Scholar 

  19. T. Xu, Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 263(1), 1–29 (2005)

    Article  CAS  Google Scholar 

  20. M.Y. Kariduraganavar, A.A. Kittur, S.S. Kulkarni, Ion exchange membranes: Preparation, properties, and applications, in Ion Exchange Technology I (Springer Netherlands, 2012), pp. 233–276

    Google Scholar 

  21. M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25(10), 1463–1502 (2000)

    Article  CAS  Google Scholar 

  22. K.S. Lee, M.H. Jeong, J.P. Lee, Y.J. Kim, J.S. Lee, Synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes. Chem. Mater. 22(19), 5500–5511 (2010)

    Article  CAS  Google Scholar 

  23. D.S. Kim, G.P. Robertson, M.D. Guiver, Y.M. Lee, Synthesis of highly fluorinated poly (arylene ether) s copolymers for proton exchange membrane materials. Journal of membrane science, 281(1-2), 111–120 (2006)

    Article  CAS  Google Scholar 

  24. J. Jaafar, A.F. Ismail, T. Matsuura, Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J. Membr. Sci. 345(1), 119–127 (2009)

    Article  CAS  Google Scholar 

  25. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. J. Kerres, W. Zhang, L. Jorissen, V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC. J. New Mater. Electrochem. Syst. 5(2), 97–108 (2002)

    CAS  Google Scholar 

  27. J. Kerres, M. Hein, W. Zhang, S. Graf, N. Nicoloso, Development of new blend membranes for polymer electrolyte fuel cell applications. J. New Mater. Electrochem. Syst. 6(4), 223–230 (2003)

    CAS  Google Scholar 

  28. J. Kerres, W. Zhang, W. Cui, New sulfonated engineering polymer via the metalation route. 2. Sulfinated-sulfonated poly(ethersulfone) PSU Udel® and its crosslinking. J. Polym. Sci. A Polym. Chem. 36, 1441–1448 (1998)

    Article  CAS  Google Scholar 

  29. J. Kerres, W. Cui, S. Reichle, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly (ethersulfone) PSU Udel® via metalation-sulfination-oxidation. J. Polym. Sci. A Polym. Chem. 34(12), 2421–2438 (1996)

    Article  CAS  Google Scholar 

  30. N.Y. Arnett, W.L. Harrison, A.S. Badami, A. Roy, O. Lane, F. Cromer, Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells. J. Power Sources 172(1), 20–29 (2007)

    Article  CAS  Google Scholar 

  31. C. Bi, H. Zhang, S. Xiao, Y. Zhang, Z. Mai, X. Li, Grafted porous PTFE/partially fluorinated sulfonated poly (arylene ether ketone) composite membrane for PEMFC applications. J. Membr. Sci. 376(1), 170–178 (2011)

    Article  CAS  Google Scholar 

  32. Y.S. Kim, W.L. Harrison, J.E. McGrath, B.S. Pivovar, Effect of interfacial resistance on long term performance of direct methanol fuel cells. Paper 334 (2004)

    Google Scholar 

  33. J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes, in Proton Conducting Membrane Fuel Cells I: Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells (1995), pp. 95–123

    Google Scholar 

  34. H.L. Lin, T.L. Yu, W.K. Chang, C.P. Cheng, C.R. Hu, G.B. Jung, Preparation of a low proton resistance PBI/PTFE composite membrane. J. Power Sources 164(2), 481–487 (2007)

    Article  CAS  Google Scholar 

  35. Z. Jie, T. Haolin, P. Mu, Fabrication and characterization of self-assembled Nafion–SiO 2–ePTFE composite membrane of PEM fuel cell. J. Membr. Sci. 312(1), 41–47 (2008)

    Article  CAS  Google Scholar 

  36. X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, B. Yi, An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis. J. Phys. Chem. B 110(29), 14240–14248 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. S. Hietala, M. Paronen, S. Holmberg, J. Näsman, J. Juhanoja, M. Karjalainen, …, G. Sundholm, Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride). J. Polym. Sci. A Polym. Chem. 37(12), 1741–1753 (1999)

    Google Scholar 

  38. D.I. Livingston, P.M. Kamath, R.S. Corley, Poly-α, β, β-trifluorostyrene. J. Polym. Sci. 20(96), 485–490 (1956)

    Article  CAS  Google Scholar 

  39. B. Tazi, O. Savadago, New cation exchange membranes based on Nafion, Silicotungstic acid and thiophene. J. New Mater. Electrochem. Syst., in press (cf. JMS 185, 3–27) (2001)

    Google Scholar 

  40. D.C. Corrêa, F.A. Rodrigues, A survey on symbolic data-based music genre classification. Expert Syst. Appl. 60, 190–210 (2016)

    Article  Google Scholar 

  41. R.B. Hodgdon, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules. J. Polym. Sci. Part A-1: Polym. Chem. 6(1), 171–191 (1968)

    Article  CAS  Google Scholar 

  42. N.H. Jalani, Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells. Doctoral dissertation, Worcester Polytechnic Institute, 2006

    Google Scholar 

  43. J. Wei, C. Stone, A.E. Steck, U.S. Patent no. 5,422,411. (U.S. Patent and Trademark Office, Washington, DC, 1995)

    Google Scholar 

  44. J.J. Fontanella, M.C. Wintersgill, J.S. Wainright, R.F. Savinell, M. Litt, High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 43(10), 1289–1294 (1998)

    Article  CAS  Google Scholar 

  45. Y.T. Hong, C.H. Lee, H.S. Park, K.A. Min, H.J. Kim, S.Y. Nam, Y.M. Lee, Improvement of electrochemical performances of sulfonated poly (arylene ether sulfone) via incorporation of sulfonated poly (arylene ether benzimidazole). J. Power Sources 175(2), 724–731 (2008)

    Article  CAS  Google Scholar 

  46. W. Sheng, G. Chunli, T. Wen-Chin, S. Yao-Chi, T. Fang –Chang, Sulfonated poly(ether sulfone) (sPES)/boron phosphate (BPO4) composite membranes for high temperature proton-exchange membrane fuel cells. Int. J. Hydrog. Energy 34, 8982–8991 (2009)

    Google Scholar 

  47. P. Rani, G. Sen, S. Mishra, U. Jha, Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym. 89(1), 275–281 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003)

    Article  CAS  Google Scholar 

  49. A. Noshay, L.M. Robeson, Sulfonated polysulfone. J. Appl. Polym. Sci. 20(7), 1885–1903 (1976)

    Article  CAS  Google Scholar 

  50. J.L. Kice, A.R. Puls, The reaction of hypochlorite with various oxidized derivatives of disulfides and with sulfinate ions. J. Am. Chem. Soc. 99(10), 3455–3460 (1977)

    Article  CAS  Google Scholar 

  51. G. Gebel, P. Aldebert, M. Pineri, Swelling study of perfluorosulphonated ionomer membranes. Polymer 34(2), 333–339 (1993)

    Article  CAS  Google Scholar 

  52. F.N. Büchi, B. Gupta, O. Haas, G.G. Scherer, Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim. Acta 40(3), 345–353 (1995)

    Article  Google Scholar 

  53. T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoyl-1, 4-phenylene). Solid State Ionics 106(3), 219–225 (1998)

    Article  CAS  Google Scholar 

  54. Q. Guo, P.N. Pintauro, H. Tang, S. O’Connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membr. Sci. 154(2), 175–181 (1999)

    Article  CAS  Google Scholar 

  55. E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, M. Pineri, Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/M z+ by electrodialysis comparison with a perfluorosulfonic membrane. J. Membr. Sci. 160(1), 127–137 (1999)

    Article  CAS  Google Scholar 

  56. H.R. Allcock, M.A. Hofmann, C.M. Ambler, S.N. Lvov, X.Y. Zhou, E. Chalkova, J. Weston, Phenyl phosphonic acid functionalized poly [aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J. Membr. Sci. 201(1), 47–54 (2002)

    Article  CAS  Google Scholar 

  57. H. Bashir, A. Linares, J.L. Acosta, Heterogeneous sulfonation of blend systems based on hydrogenated poly (butadiene–styrene) block copolymer. Electrical and structural characterization. Solid State Ionics 139(3), 189–196 (2001)

    Article  CAS  Google Scholar 

  58. M.A. Hofmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, H.R. Allock, Synthesis of polyphosphazenes with sulfonimide side groups. Macromolecules 35, 6490–6493 (2002)

    Article  CAS  Google Scholar 

  59. D. Poppe, H. Frey, K.D. Kreuer, A. Heinzel, R. Mülhaupt, Carboxylated and sulfonated poly (arylene-co-arylene sulfone) s: thermostable polyelectrolytes for fuel cell applications. Macromolecules 35(21), 7936–7941 (2002)

    Article  CAS  Google Scholar 

  60. S. Haufe, U. Stimming, Proton conducting membranes based on electrolyte filled microporous matrices. J. Membr. Sci. 185(1), 95–103 (2001)

    Article  CAS  Google Scholar 

  61. W. Becker, G. Schmidt-Naake, Proton Exchange Membranes by Irradiation Induced Grafting of Styrene Onto FEP and ETFE: Influences of the Crosslinker N, N-Methylene-bis-acrylamide. Chemical engineering & technology, 25(4), 373–377 (2002)

    Article  CAS  Google Scholar 

  62. T. Xu, D. Wu, L. Wu, Poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) – a versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci. 33(9), 894–915 (2008)

    Article  CAS  Google Scholar 

  63. V. Mehta, Analysis of design and manufacturing of proton exchange membrane fuel cells (2002)

    Google Scholar 

  64. V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114(1), 32–53 (2003)

    Article  CAS  Google Scholar 

  65. H. Miyake, The design and development of Flemion membranes, in Modern chlor-alkali technology. (Springer Netherlands, 1992), pp. 59–67

    Google Scholar 

  66. B.S. Pivovar, Y. Wang, E.L. Cussler, Pervaporation membranes in direct methanol fuel cells. J. Membr. Sci. 154(2), 155–162 (1999)

    Article  CAS  Google Scholar 

  67. T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23), 5341–5357 (2009)

    Article  CAS  Google Scholar 

  68. H.L. Wu, C.C.M. Ma, F.Y. Liu, C.Y. Chen, S.J. Lee, C.L. Chiang, Preparation and characterization of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend membranes. Eur. Polym. J. 42(7), 1688–1695 (2006)

    Article  CAS  Google Scholar 

  69. B. Smitha, G. Dhanuja, S. Sridhar, Dehydration of 1, 4-dioxane by pervaporation using modified blend membranes of chitosan and nylon 66. Carbohydr. Polym. 66(4), 463–472 (2006)

    Article  CAS  Google Scholar 

  70. J.K. Lee, W. Li, A. Manthiram, Poly (arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J. Membr. Sci. 330, 73–79 (2009)

    Article  CAS  Google Scholar 

  71. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010)

    Article  CAS  Google Scholar 

  72. R.P. Kambour, J.T. Bendler, R.C. Bopp, Phase behavior of polystyrene, poly (2, 6-dimethyl-1, 4-phenylene oxide), and their brominated derivatives. Macromolecules 16(5), 753–757 (1983)

    Article  CAS  Google Scholar 

  73. P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229(1), 95–106 (2004)

    Article  CAS  Google Scholar 

  74. M. Alexander, E.T. Thachil, A comparative study of cardanol and aromatic oil as plasticizers for carbon-black-filled natural rubber. J. Appl. Polym. Sci. 102(5), 4835–4841 (2006)

    Article  CAS  Google Scholar 

  75. S. Sinha, M. Ali, S. Baboota, A. Ahuja, A. Kumar, J. Ali, Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 11(2), 518–527 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. S. Natarajan, J.J. Moses, Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium. Indian J. Fibre Text. Res. 37, 287–291 (2012)

    Google Scholar 

  77. H. Pu, W.H. Meyer, G. Wegner, Proton conductivity in acid-blended poly (4-vinylimidazole). Macromol. Chem. Phys. 202(9), 1478–1482 (2001)

    Article  CAS  Google Scholar 

  78. A. Bozkurt, W.H. Meyer, Proton-conducting poly (vinylpyrrolidon)–polyphosphoric acid blends. J. Polym. Sci. B Polym. Phys. 39(17), 1987–1994 (2001)

    Article  CAS  Google Scholar 

  79. C. Hasiotis, V. Deimede, C. Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim. Acta 46(15), 2401–2406 (2001)

    Article  CAS  Google Scholar 

  80. C. Hasiotis, L. Qingfeng, V. Deimede, J.K. Kallitsis, C.G. Kontoyannis, N.J. Bjerrum, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J. Electrochem. Soc. 148(5), A513–A519 (2001)

    Article  CAS  Google Scholar 

  81. J. Kerres, A. Ullrich, F. Meier, T. Haring, Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999)

    Article  CAS  Google Scholar 

  82. T. Xue, J.S. Trent, K. Osseo-Asare, Characterization of nafion® membranes by transmission electron microscopy. J. Membr. Sci. 45(3), 261–271 (1989)

    Article  CAS  Google Scholar 

  83. W. Priedel, M. Baldauf, U. Gebhardt, J. Kerres, A. Ullrich, New ionomer membranes and their FC applications. 2. H2 fuel cell and DMFC application, in Extended Abstracts of Third International Symposium New Materials for Electrochemical Systems, Montreal, 1999, pp. 233–234

    Google Scholar 

  84. J. Kerres, A. Ullrich, T. Haring, M. Baldauf, U. Gebhardt, W. Preidel, Preparation, characterization, and fuel cell application of new acid-base blend membranes. J. New Mater. Electrochem. Syst. 3(3), 229–240 (2000)

    CAS  Google Scholar 

  85. D. Wu, T. Xu, L. Wu, Y. Wu, Hybrid acid–base polymer membranes prepared for application in fuel cells. J. Power Sources 186(2), 286–292 (2009)

    Article  CAS  Google Scholar 

  86. Y.F. Liang, H.Y. Pan, X.L. Zhu, Y.X. Zhang, X.G. Jian, Studies on synthesis and property of novel acid–base proton exchange membranes. Chin. Chem. Lett. 18(5), 609–612 (2007)

    Article  CAS  Google Scholar 

  87. L. Qingfeng, H.A. Hjuler, N.J. Bjerrum, Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 31(7), 773–779 (2001)

    Article  Google Scholar 

  88. S.R. Samms, S. Wasmus, R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J. Electrochem. Soc. 143(4), 1225–1232 (1996)

    Article  CAS  Google Scholar 

  89. R. Bouchet, S. Miller, M. Deulot, J.L. Sonquet, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 1(45), 69–78 (2001)

    Article  CAS  Google Scholar 

  90. P. Steiner, R. Sandor, Polybenzimidazole prepreg: improved elevated temperature properties with autoclave processability. High Perform. Polym. (UK) 3(3), 139–150 (1991)

    Article  CAS  Google Scholar 

  91. Y. Liu, J.H. He, J.Y. Yu, H.M. Zeng, Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 57(4), 632–636 (2008)

    Article  CAS  Google Scholar 

  92. J. Won, J.S. Seo, J.H. Kim, H.S. Kim, Y.S. Kang, S.J. Kim, …, J. Jegal, Coordination compound molecular sieve membranes. Adv. Mater. 17(1), 80–84 (2005)

    Article  CAS  Google Scholar 

  93. N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 128(5), 1762–1769 (2006)

    Article  CAS  PubMed  Google Scholar 

  94. C. Feng, K.C. Khulbe, T. Matsuura, Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 115(2), 756–776 (2010)

    Article  CAS  Google Scholar 

  95. P. Lu, B. Ding, Applications of electrospun fibers. Recent Pat. Nanotechnol. 2(3), 169–182 (2008)

    Article  CAS  PubMed  Google Scholar 

  96. Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197–1211 (2006)

    Article  CAS  PubMed  Google Scholar 

  97. I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process – A review. J. Mater. Process. Technol. 167(2), 283–293 (2005)

    Article  CAS  Google Scholar 

  98. T.N. Cason, L. Gangadharan, Price discovery and intermediation in linked emissions trading markets: A laboratory study. Ecol. Econ. 70(7), 1424–1433 (2011)

    Article  Google Scholar 

  99. A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70(5), 703–718 (2010)

    Article  CAS  Google Scholar 

  100. G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams, Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290(2), 390–395 (1984)

    Article  CAS  PubMed  Google Scholar 

  101. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  CAS  Google Scholar 

  102. A. Zucchelli, D. Fabiani, C. Gualandi, M.L. Focarete, An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. J. Mater. Sci. 44(18), 4969–4975 (2009)

    Article  CAS  Google Scholar 

  103. B. Dong, L. Gwee, D. Salas-de La Cruz, K.I. Winey, Y.A. Elabd, Super proton conductive high-purity Nafion nanofibers. Nano Lett. 10(9), 3785–3790 (2010)

    Article  CAS  PubMed  Google Scholar 

  104. K.A. Mauritz, R.B. Moore, State of understanding of Nafion. Chem. Rev. 104(10), 4535–4586 (2004)

    Article  CAS  PubMed  Google Scholar 

  105. T. Tamura, H. Kawakami, Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 10(4), 1324–1328 (2010)

    Article  CAS  PubMed  Google Scholar 

  106. N. Hamid, J. Stanger, N. Tucker, N. Buunk, A. Wood, M. Staiger, Control of spatial deposition of electrospun fiber using electric field manipulation. J. Eng. Fibers Fabr. 9(1), 155–164 (2014)

    Google Scholar 

  107. C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, …, J. Zhu, Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 20(9), 1644–1648 (2008)

    Article  CAS  Google Scholar 

  108. L. Li, J. Zhang, Y. Wang, Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 226(1), 159–167 (2003)

    Article  CAS  Google Scholar 

  109. J.M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, R. Jérôme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application. J. Membr. Sci. 270(1), 50–56 (2006)

    Article  CAS  Google Scholar 

  110. S.J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim. Acta 50(24), 4771–4777 (2005)

    Article  CAS  Google Scholar 

  111. H. Doğan, T.Y. Inan, M. Koral, M. Kaya, Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl. Clay Sci. 52(3), 285–294 (2011)

    Article  CAS  Google Scholar 

  112. C. Lee, S.M. Jo, J. Choi, K.Y. Baek, Y.B. Truong, I.L. Kyratzis, Y.G. Shul, SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J. Mater. Sci. 48(10), 3665–3671 (2013)

    Article  CAS  Google Scholar 

  113. J. Jaafar, A.F. Ismail, T. Matsuura, K. Nagai, Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC. J. Membr. Sci. 382(1), 202–211 (2011)

    Article  CAS  Google Scholar 

  114. S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly (ether ether ketone)(SPEEK). J. Membr. Sci. 233(1), 93–99 (2004)

    Article  CAS  Google Scholar 

  115. C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, H. Na, Synthesis of the block sulfonated poly (ether ether ketone)s (S-PEEKs) materials for proton exchange membrane. J. Membr. Sci. 280(1), 643–650 (2006)

    Article  CAS  Google Scholar 

  116. S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine, Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids. J. Polym. Sci. B Polym. Phys. 38(10), 1386–1395 (2000)

    Article  CAS  Google Scholar 

  117. C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J. Membr. Sci. 206(1), 443–453 (2002)

    Article  CAS  Google Scholar 

  118. H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, H. Na, Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance. J. Membr. Sci. 308(1), 66–74 (2008)

    Article  CAS  Google Scholar 

  119. C.S. Karthikeyan, S.P. Nunes, L.A.S.A. Prado, M.L. Ponce, H. Silva, B. Ruffmann, K. Schulte, Polymer nanocomposite membranes for DMFC application. J. Membr. Sci. 254(1), 139–146 (2005)

    Article  CAS  Google Scholar 

  120. H. Ohya, R. Paterson, T. Nomura, S. McFadzean, T. Suzuki, M. Kogure, Properties of new inorganic membranes prepared by metal alkoxide methods Part I: A new permselective cation exchange membrane based on Si/Ta oxides. J. Membr. Sci. 105(1–2), 103–112 (1995)

    Article  CAS  Google Scholar 

  121. P.L. Antonucci, A.S. Arico, P. Cretı, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125(1), 431–437 (1999)

    Article  CAS  Google Scholar 

  122. B. Baradie, J.P. Dodelet, D. Guay, Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J. Electroanal. Chem. 489(1), 101–105 (2000)

    Article  CAS  Google Scholar 

  123. S. Wasmus, A. Valeriu, G.D. Mateescu, D.A. Tryk, R.F. Savinell, Characterization of H3PO4-equilibrated Nafion® 117 membranes using 1H and 31P NMR spectroscopy. Solid State Ionics 80(1–2), 87–92 (1995)

    Article  CAS  Google Scholar 

  124. L. Mex, J. Müller, Plasma-polymerised electrolyte membrane for miniaturised direct methanol fuel cells. Membr. Technol. 1999(115), 5–9 (1999)

    Article  Google Scholar 

  125. F. Finsterwalder, G. Hambitzer, Proton conductive thin films prepared by plasma polymerization. J. Membr. Sci. 185(1), 105–124 (2001)

    Article  CAS  Google Scholar 

  126. B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, U.S. Patent no. 5,547,551. (U.S. Patent and Trademark Office, Washington, DC, 1996)

    Google Scholar 

  127. C. Seyb, J. Kerres, Novel partially fluorinated sulfonated poly (arylenethioether)s and poly (aryleneether)s prepared from octafluorotoluene and pentafluoropyridine, and their blends with PBI-Celazol. Eur. Polym. J. 49(2), 518–531 (2013)

    Article  CAS  Google Scholar 

  128. G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21(18), 8487–8494 (2005)

    Article  CAS  PubMed  Google Scholar 

  129. F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci. 197(1–2), 231–242 (2002)

    Article  CAS  Google Scholar 

  130. B. Lafitte, L.E. Karlsson, P. Jannasch, Sulfophenylation of polysulfones for proton-conducting fuel cell membranes. Macromol. Rapid Commun. 23(15), 896–900 (2002)

    Article  CAS  Google Scholar 

  131. Y.Z. Meng, S.C. Tjong, A.S. Hay, S.J. Wang, Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether) s. J. Polym. Sci. A Polym. Chem. 39(19), 3218–3226 (2001)

    Article  CAS  Google Scholar 

  132. L. Jörissen, V. Gogel, J. Kerres, J. Garche, New membranes for direct methanol fuel cells. J. Power Sources 105(2), 267–273 (2002)

    Article  Google Scholar 

  133. Y.A. Elabd, E. Napadensky, J.M. Sloan, D.M. Crawford, C.W. Walker, Triblock copolymer ionomer membranes: Part I. Methanol and proton transport. J. Membr. Sci. 217(1), 227–242 (2003)

    Article  CAS  Google Scholar 

  134. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, … & K.V. Peinemann, Ion exchange membranes derived from sulfonated polyaramides. React. Funct. Polym. 57(2), 77–92 (2003)

    Article  CAS  Google Scholar 

  135. M.S. Kang, Y.J. Choi, I.J. Choi, T.H. Yoon, S.H. Moon, Electrochemical characterization of sulfonated poly (arylene ether sulfone)(S-PES) cation-exchange membranes. J. Membr. Sci. 216(1), 39–53 (2003)

    Article  CAS  Google Scholar 

  136. A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt, J. Meier-Haack, Sulfonated multiblock copoly (ether sulfone) s as membrane materials for fuel cell applications, in Macromolecular Symposia, vol. 210, no. 1. (WILEY-VCH Verlag, 2004), pp. 175–184

    Google Scholar 

  137. G. Xiao, G. Sun, D. Yan, Synthesis and characterization of novel sulfonated poly (arylene ether ketone)s derived from 4, 4′-sulfonyldiphenol. Polym. Bull. 48(4), 309–315 (2002)

    Article  CAS  Google Scholar 

  138. C. Vogel, J. Meier-Haack, A. Taeger, D. Lehmann, On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel Cells 4(4), 320–327 (2004)

    Article  CAS  Google Scholar 

  139. J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K.I. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4′-diaminodiphenyl ether-2, 2′-disulfonic acid. Macromolecules 35(24), 9022–9028 (2002)

    Article  CAS  Google Scholar 

  140. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42(2), 359–373 (2001)

    Article  CAS  Google Scholar 

  141. C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42(12), 5097–5105 (2001)

    Article  CAS  Google Scholar 

  142. S. Besse, P. Capron, O. Diat, G. Gebel, F. Jousse, D. Marsacq, …, R. Mercier, Sulfonated polyimidesfor fuel cell electrode membrane assemblies (EMA). J. New Mater. Electrochem. Syst. 5, 109–112 (2002)

    Google Scholar 

  143. J.A. Asensio, S. Borrós, P. Gómez-Romero, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J. Polym. Sci. A Polym. Chem. 40(21), 3703–3710 (2002)

    Article  CAS  Google Scholar 

  144. J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147(1), 189–194 (2002)

    Article  CAS  Google Scholar 

  145. R. Carter, R. Wycisk, H. Yoo, P.N. Pintauro, Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 5(9), A195–A197 (2002)

    Article  CAS  Google Scholar 

  146. M. Schuster, W.H. Meyer, G. Wegner, H.G. Herz, M. Ise, K.D. Kreuer, J. Maier, Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ionics 145(1), 85–92 (2001)

    Article  CAS  Google Scholar 

  147. Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34(5), 449–477 (2009)

    Article  CAS  Google Scholar 

  148. V. Mama, R.A. Vargas, B.E. Mellander, New proton conducting membranes based on PVAL/H3 PO2/H2O. Electrochim. Acta 44, 4227–4232 (1999)

    Google Scholar 

  149. A. Bozkurt, W.H. Meyer, Proton conducting blends of poly (4-vinylimidazole) with phosphoric acid. Solid State Ionics 138(3), 259–265 (2001)

    Article  CAS  Google Scholar 

  150. J.C. Lassegues, J. Grondin, M. Hernandez, B. Maree, Proton conducting polymer blends and hybrid organic inorganic materials. Solid State Ionics 145(1), 37–45 (2001)

    Article  CAS  Google Scholar 

  151. R.Q. Fu, D. Julius, L. Hong, J.Y. Lee, PPO-based acid–base polymer blend membranes for direct methanol fuel cells. J. Membr. Sci. 322(2), 331–338 (2008)

    Article  CAS  Google Scholar 

  152. T.Z. Fu, Z.M. Cui, S.L. Zhong, Y.H. Shi, C.J. Zhao, G. Zhang, …, W Xing, Sulfonated poly (ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. J. Power Sources (2008)

    Google Scholar 

  153. Y.Z. Fu, A. Manthiram, Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. J. Power Sources 157(1), 222–225 (2006)

    Article  CAS  Google Scholar 

  154. J. Peron, E. Ruiz, D.J. Jones, J. Rozière, Solution sulfonation of a novel polybenzimidazole: A proton electrolyte for fuel cell application. J. Membr. Sci. 314(1), 247–256 (2008)

    Article  CAS  Google Scholar 

  155. J. Jaafar, A.F. Ismail, A. Mustafa, Physicochemical study of poly (ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater. Sci. Eng. A 460, 475–484 (2007)

    Article  CAS  Google Scholar 

  156. Y. Xiong, J. Fang, Q.H. Zeng, Q.L. Liu, Preparation and characterization of cross-linked quaternized poly (vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1), 319–325 (2008)

    Article  CAS  Google Scholar 

  157. R. Neppalli, S. Wanjale, M. Birajdar, V. Causin, The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly (vinylidene fluoride). Eur. Polym. J. 49(1), 90–99 (2013)

    Article  CAS  Google Scholar 

  158. W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)

    Article  CAS  PubMed  Google Scholar 

  159. A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)

    Article  CAS  Google Scholar 

  160. S.-H. Yun, J.-J. Woo, S.-J. Seo, L. Wu, D. Wu, T. Xu, S.-H. Moon, Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J. Membr. Sci. 367(1), 296–305 (2011)

    Article  CAS  Google Scholar 

  161. S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)

    Article  CAS  Google Scholar 

  162. Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly (vinylidene fluoride). ACS Appl. Mater. Interfaces 2(6), 1759–1768 (2010)

    Article  CAS  PubMed  Google Scholar 

  163. H. Junoh, J. Jaafar, M.H.D. Othman, M.A. Rahman, Polymer based membrane electrospun fiber in fuel cell application: A short review (2014)

    Google Scholar 

  164. Z. Gaowen, Z. Zhentao, Organic/inorganic composite membranes for application in DMFC. J. Membr. Sci. 261(1–2), 107–113 (2005)

    Article  CAS  Google Scholar 

  165. X. Zhu, H. Zhang, Y. Liang, Y. Zhang, Q. Luo, C. Bi, B. Yi, Challenging reinforced composite polymer electrolyte membranes based on disulfonated poly (arylene ether sulfone)-impregnated expanded PTFE for fuel cell applications. J. Mater. Chem. 17(4), 386–397 (2007)

    Article  CAS  Google Scholar 

  166. H. Tang, M. Pan, S.P. Jiang, X. Wang, Y. Ruan, Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochim. Acta 52(16), 5304–5311 (2007)

    Article  CAS  Google Scholar 

  167. N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. React. Funct. Polym. 86, 248–258 (2015)

    Article  CAS  Google Scholar 

  168. H.S. Thiam, W.R.W. Daud, S.K. Kamarudin, A.B.. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Nafion/Pd–SiO 2 nanofiber composite membranes for direct methanol fuel cell applications. Int. J. Hydrog. Energy 38(22), 9474–9483 (2013)

    Article  CAS  Google Scholar 

  169. W. Yuan, G. Fang, Z. Li, Y. Chen, Y. Tang, Using electrospinning-based carbon nanofiber webs for methanol crossover control in passive direct methanol fuel cells. Materials 11(1), 71 (2018)

    Article  PubMed Central  Google Scholar 

  170. M. Salahuddin, M.N. Uddin, G. Hwang, R. Asmatulu, Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management. Int. J. Hydrog. Energy 43(25), 11530–11538 (2018)

    Article  CAS  Google Scholar 

  171. N. Abdullah, S.K. Kamarudin, L.K. Shyuan, Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances. Nanoscale Res. Lett. 13(1), 90 (2018)

    Google Scholar 

  172. B. Munavalli, A. Torvi, M. Kariduraganavar, A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer 142, 293–309 (2018)

    Article  CAS  Google Scholar 

  173. A.S. Aricó, V. Baglio, V. Antonucci, Electrocatalysis of Direct Methanol Fuel Cells (Verlag GmbH & Co., Weinheim, 2009)

    Google Scholar 

  174. S. Jang, Y.G. Yoon, Y.S. Lee, Y.W. Choi, One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells. J. Membr. Sci. 563, 896–902 (2018)

    Article  CAS  Google Scholar 

  175. S. Chan, J. Jankovic, D. Susac, M.S. Saha, M. Tam, H. Yang, F. Ko, Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J. Power Sources 392, 239–250 (2018)

    Article  CAS  Google Scholar 

  176. N. Awang, J. Jaafar, A.F. Ismail, Thermal stability and water content study of void-free electrospun SPEEK/Cloisite membrane for direct methanol fuel cell application. Polymers 10(2), 194 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  177. F. Helmer-Metzman, F. Osan, A. Schneller, H. Ritter, K. Ledjeff, R. Nolte, R. Thorwirth, Polymer electrolyte membrane, and process for the production thereof, US Patent 5,438,082 (1995)

    Google Scholar 

  178. H. Junoh, J. Jaafar, N.A.M. Nor, N. Awang, M.N.A.M. Norddin, A.F. Ismail, … & W. N. W. Salleh, J. Membr. Sci. Res. (2018)

    Google Scholar 

  179. N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N. Yusof, et al., Development of dense void-free electrospun SPEEK-Cloisite15A membrane for direct methanol fuel cell application: Optimization using response surface methodology. Int. J. Hydrog. Energy 42(42), 26496–26510 (2017)

    Article  CAS  Google Scholar 

  180. J. Jaafar, Development and characterization of sulfonated poly (ether ether ketone) membrane for direct methanol fuel cell. Universiti Teknologi Malaysia. M.Sc. Thesis, 2006

    Google Scholar 

  181. N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Effects of SPEEK/Cloisite concentration as electrospinning parameter on proton exchange membrane for direct methanol fuel cell application. Mater. Sci. Forum 890, 278 (2017). Trans Tech Publications Ltd

    Google Scholar 

  182. N. Awang, J. Jaafar, A.F. Ismail, T. Matsuura, M.H.D. Othman, M.A. Rahman, Electrospun nanocomposite materials for polymer electrolyte membrane methanol fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes, (Springer, Cham, 2017), pp. 165–191

    Chapter  Google Scholar 

  183. M.A. Mohamed, M.A. Mutalib, Z.A.M. Hir, M.F.M. Zain, A.B. Mohamad, L.J. Minggu, et al., An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232–1256 (2017)

    Article  CAS  PubMed  Google Scholar 

  184. M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M.A. Mutalib, A.B. Mohamad, et al., Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr. Polym. 157, 1892–1902 (2017)

    Article  CAS  PubMed  Google Scholar 

  185. J.P. Luongo, Infrared study of oxygenated groups formed in polyethylene during oxidation. J. Polym. Sci. 42(139), 139–150 (1960)

    Article  CAS  Google Scholar 

  186. M.A. Abdelkareem, Y. Al Haj, M. Alajami, H. Alawadhi, N.A. Barakat, Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell. J. Environ. Chem. Eng. 6(1), 332–337 (2018)

    Article  CAS  Google Scholar 

  187. A.R. Ashraf, J.J. Ryan, M.M. Satkowski, S.D. Smith, R.J. Spontak, Effect of systematic hydrogenation on the phase behavior and nanostructural dimensions of block copolymers. ACS Appl. Mater. Interfaces 10(4), 3186–3190 (2018)

    Article  CAS  Google Scholar 

  188. Li, J. Zhang, Y. Wang, sulfonated poly (ether ether ketone) mem-branes for direct methanol fuel cell, J. Membr. Sci. 226, 159 (2003)

    Article  CAS  Google Scholar 

  189. T. Sancho, J. Lemus, M. Urbiztondo, J. Soler, M.P. Pina, Zeolites and zeotype materials as efficient barriers for methanol cross-over in DMFCs. Microporous and Mesoporous Materials, 115(1-2), 206–213 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author (Nuha Awang) is thankful to the Ministry of Higher Education (MOHE) and Ministry of Science, Technology & Innovation (MOSTI) for the financial support under vote number of R.J130000.4F157, R.J130000.05H25, and R.J130000.4S057), and also to the Research Management Centre (RMC), UTM for research management activities, and Zamalah scholarship provided by School of Graduate Study (SPS), UTM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juhana Jaafar or A. F. Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Awang, N., Jaafar, J., Ismail, A.F., Matsuura, T., Othman, M.H.D., Rahman, M.A. (2018). Proton Conductions. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics