Skip to main content

Polymeric Micelles

  • Living reference work entry
  • First Online:
Functional Biopolymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Polymeric micelles (PM) are means of novel drug carriers for poorly soluble hydrophobic drugs. Outer shell of polymeric micelles is hydrophilic in nature which further led these carriers to stay longer in blood and can accumulate in tumor-specific region due to their smaller size through enhanced permeation and retention (EPR) effect. The polymeric micelles can also be modified through different ligand to achieve active targeting of drugs. Polymeric micelles can be synthesized and prepared through different self-assembly methods. These can be used to improve solubility, residence time of drug in blood, and inhibition of efflux pump, to enhance pharmacokinetic parameters, and to achieve sustained release of drugs at target site without any side effects in an efficient manner. These types of novel drug delivery systems are aimed to enhance the efficacy and reduce the side effects of anticancer drugs in an efficient way. The present chapter highlights the structure, methods of preparation, the micellar architecture, and the role of these carriers in the anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

(mPEG-b-p(HPMAm-lactate):

(Poly(ethyleneglycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate]

(PEG-b-PPhe):

poly(ethylene glycol)-block-poly(phenylalanine)

(Vitamin E TPGS2k):

D-α-Tocopheryl polyethylene glycol succinate 2000

ABC:

Accelerated blood clearance

ATP:

Adenosine triphosphate

BCS:

Biopharmaceutics classification system

CMC:

Critical micelle concentration

DMF:

Dimethylformamide

DOX:

Doxorubicin

DSC:

Differential scanning calorimetric

EPR:

Enhanced permeability and retention

GIT:

Gastro-intestinal tract

mPEG-PDLLA:

monomethoxy poly(ethylene glycol)-block-poly (D,L-lactide)

MPS:

Mononuclear phagocyte system

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

PCL:

Poly ϵ-caprolactone

PEO:

poly(ethylene oxide)

pHPMAmDL-b-PEG:

poly(N-(2-hydroxypropyl) methacrylamide lactate) poly(ethylene glycol)

PLA:

Polylactic acid

PLL-PEG:

Poly-l-lysine-poly(ethylene glycol)

PM:

Polymeric micelles

ppm:

Parts per million

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

References

  1. L. Wang, R. Zeng, C. Li, R. Qiao, Self-assembled polypeptide-block-poly (vinylpyrrolidone) as prospective drug-delivery systems. Colloids Surf. B. Biointerfaces 74, 284–292 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, J.C. Leroux, Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109, 169–188 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. V.P. Torchilin, V.S. Trubetskoy, Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16, 141–155 (1995)

    Article  CAS  Google Scholar 

  4. C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. K. L. Mittal, B. Lindman (eds.), Surfactants in solution, vols 1–3 (Plenum Press, New York, 1991)

    Google Scholar 

  6. D.D. Lasic, Mixed micelles in drug delivery. Nature 355, 279–280 (1992)

    Article  CAS  PubMed  Google Scholar 

  7. V.P. Torchilin, Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61, 2549–2559 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Gao, A. Eisenberg, A model of micellization for block copolymers in solutions. Macromolecules 26, 7353–7360 (1993)

    Article  CAS  Google Scholar 

  9. C.M. Jones, J.C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48, 101–111 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. V.P. Torchilin, Structure and design of polymeric surfactant- based drug delivery systems. J. Control. Release 73, 137–172 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65, 271–284 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. H. Maeda, T. Sawa, T. Konno, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74, 47–61 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. R. Duncan, Drug–polymer conjugates : Potential for improved chemotherapy. Anti-Cancer Drugs 3, 175–210 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. T. Minko, P. Kopeckova, V. Pozharov, J. Kopecek, HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J. Control. Release 54, 223–233 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. A.C. de Verdiere, C. Dubernet, F. Nemati, M.F. Poupon, F. Puisieux, P. Couvreur, Uptake of doxorubicin from loaded nanoparticles in multidrug resistant leukemic murine cells. Cancer Chemother. Pharmacol. 33, 504–508 (1994)

    Article  Google Scholar 

  16. A. Gothwal, I. Khan, U. Gupta, Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm. Res. 33, 18–39 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. R. Nagarajan, M. Barry, Unusual selectivity in solubilization by block copolymer micelles. Abstr. Pap. Am. Chem. Soc. 191, 287–290 (1986)

    Google Scholar 

  18. L. Ying, K. Park, Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453, 198–214 (2013)

    Article  CAS  Google Scholar 

  19. A. Nishiyama, N. Kanayama, N. Jang, W.D.Y. Yamasaki, K. Kataoka, PEGylated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection. J. Control. Release 115, 208–215 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. V.P. Torchilin, V.S. Trubetskoy, Chapter 8: Biodistribution of surface-modified liposomes and particles, in Microparticulate systems for the delivery of proteins and vaccines, ed. by S. Cohen, H. Bernstein (Eds), (Marcel Dekker, New York, 1996), pp. 243–277

    Google Scholar 

  21. R. Gref, A. Domb, P. Quellec, T. Blunk, R.H. Muller, J.M. Verbavatz, R. Langer, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16, 215–234 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.V. Kabanov, V.P. Chekhonin, V.Y. Alakhov, E.V. Batrakova, A.S. Lebedev, N.S. Melik-Nubarov, The neuroleptic activity of haloperidol increases after its solubilisation in surfactant micelles. FEBS Lett. 258, 343–345 (1989)

    Article  CAS  PubMed  Google Scholar 

  23. S.A. Hagan, A.G.A. Coombes, M.C. Garnett, S.E. Dunn, M.C. Davies, L. Illum, S.S. Davis, S.E. Harding, S. Purkiss, P.R. Gellert, Polylactide-poly(ethelene glycol) copolymers as drug delivery systems, 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153–2161 (1996)

    Article  CAS  Google Scholar 

  24. T. Inoue, G. Chen, K. Nakamae, A.S. Hoffman, An AB block copolymers of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J. Control. Release 51, 221–229 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. M. Yokoyama, T. Okano, Y. Sakurai, S. Suwa, K. Kataoka, Introduction of cisplatin into polymeric micelles. J. Control. Release 6, 39–351 (1996)

    Google Scholar 

  26. G.S. Kwon, T. Okano, Polymeric micelle as new drugcarriers. Adv. Drug Deliv. Rev. 16, 107–111 (1996)

    Article  Google Scholar 

  27. M. okoyama, Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 7, 145–158 (2010)

    Article  Google Scholar 

  28. S.R. Croy, G.S. Kwon, Polymeric micelles for drug delivery. Curr. Pharm. Des. 12, 4669–4684 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. M. Yokoyama, G.S. Kwon, K. Kataoka, Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem. 3, 295–301 (1992)

    Article  CAS  PubMed  Google Scholar 

  30. C.J.T. Hoes, W. Potman, J. Feijen, Optimization of macromolecular prodrugs of the antitumor antibiotic Adriamycin. J. Control. Release 2, 205–213 (1985)

    Article  CAS  Google Scholar 

  31. R. Duncan, P. Kopeckova-Rejmanova, J. Kopecek, Anticancer agents coupled toN-(2-hydroxypropyl) methacrylamidecopolymers I. Evaluation of daunomycinand puromycin conjugates in vitro. Br. J. Cancer 55, 165–174 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Endo, N. Umemoto, T. Hara, A novelcovalent modification of antibodies at theiramino groups with retention of antigen-binding activity. J. Immunol. Methods 104, 253–258 (1987)

    Article  CAS  PubMed  Google Scholar 

  33. F. Zunino, G. Pratesi, A. Micheloni, Poly(carboxylic acid) polymers as carriers for anthracyclines. J. Control. Release 10, 65–73 (1989)

    Article  CAS  Google Scholar 

  34. H. Cabral, M. Nakanishi, M. Kumagai, W.D. Jang, N. Nishiyama, K. Kataoka, A photoactivated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles. Pharm. Res. 26, 82–92 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. M. Yokoyama, P. Opanasopit, T. Okano, Polymer design and incorporation method for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J. Drug Target. 12, 373–384 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. S. Patel, A. Levasanifer, P. Choi, Application of molecular dynamics simulation to predict compatibility between water-insoluble drugs and self-associating poly (ethylene oxide)-poly (ɛ-caprolactone) block copolymers. Biomacromolecules 9, 3014–3023 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12, 195–204 (1995)

    Google Scholar 

  38. M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92, 1343–1355 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. K. Osada, R.J. Christie, K. Kataoka, Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J. R. Soc. Interface 6, 325–339 (2009)

    Article  CAS  Google Scholar 

  40. M.H. Dufresne, E. Fournie, M.C. Jones, M. Ranger, J.C. Leroux, Block copolymer micelles-engineering versatile carriers for drugs and bio-macromolecules, in Challenges in drug delivery for the new millennium, ed. by R. Gurny (Ed), (Bulletin Technique Gattefosse, Saint-Priest, 2003), pp. 87–102

    Google Scholar 

  41. V.Y. Alakhov, E.Y. Moskaleva, E.V. Batrakova, A.V. Kabanov, Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 copolymer. Bioconjug. Chem. 7, 209–216 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. N. Nishiyama, K. Kataoka, Preparation and characterization of size controlled polymeric micelle containing cis-dichlorodiammine platinum (II) in the core. J. Control. Release 74, 83–94 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Li, G.S. Kwon, Methotrexate esters of poly (ethylene oxide)-block poly(2-hydroxyethyl-L-aspartamide). I. Effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharm. Res. 17, 601–611 (2000)

    Article  Google Scholar 

  44. C.J. Rijcken, C.J. Snel, R.M. Schiffelers, C.F. Van Nostrum, W.E. Hennink, Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials 28, 5581–5593 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. X. Zhang, J.K. Jackson, H.M. Burt, Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int. J. Pharm. 132, 195–206 (1996)

    Article  CAS  Google Scholar 

  46. J. Taillefer, M.C. Jones, N. Brasseur, J.E. Van Lier, J.C. Leroux, Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J. Pharm. Sci. 89, 52–62 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. L. Liu, L. Sun, Q. Wu, W. Guo, L. Li, et al., Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int. J. Pharm. 443, 175–182 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714–719 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. A. Lavasanifar, J. Samuel, G.S. kwon, Micelles of poly(ethylene oxide)-block-poly(N-alkyl stearate L-aspartamide): synthetic analogues of lipoproteins for drug delivery. J. Biomed. Mater. Res. 52, 831–835 (2000)

    Article  CAS  PubMed  Google Scholar 

  50. H.M. Aliabadi, A. Lavasanifar, Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 3, 139 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. S.B. La, T. Okano, K. Kataoka, Preparation and Characterization of the Micelle-Forming Polymeric Drug Indomethacin-incorporated Poly(ethylene oxide)-Poly(β-benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 85, 85–90 (1996)

    Article  CAS  PubMed  Google Scholar 

  52. Y.B. Patil, U.S. Toti, A. Khdair, M. Linan, J. Panyam, Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30, 859–866 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. J. Zhang, W. Jiang, X. Zhao, Y. Wang, Preparation and characterization of polymeric micelles from poly(D,L-lactide) and methoxypolyethylene glycol block copolymers as potential drug carriers. Tsinghua Sci. Technol. 12, 493–496 (2007)

    Article  CAS  Google Scholar 

  54. L. Na, Hongyu, W. Xing, J. Zhen, C. Zhiming, Morphology and in vitro release kinetics of drug-loaded micelles based on well-defined PMPCb-PBMA copolymer. Int. J. Pharm. 371, 190–196 (2009)

    Article  CAS  Google Scholar 

  55. Z.L. Tyrrell, Y. Shena, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 35, 1128–1143 (2010)

    Article  CAS  Google Scholar 

  56. K. Kataoka, T. Matsumoto, M. Yokoyama, Doxorubicin-loaded poly (ethylene glycol)-poly(beta-benzyl L-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. J. Control. Release 64, 143–153 (2000)

    Article  CAS  PubMed  Google Scholar 

  57. G. Kwon, M. Naito, M. Yokoyama, Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Release 48, 195–201 (1997)

    Article  CAS  Google Scholar 

  58. J. Zhiang, M. Wu, J. Yang, Q. Wu, Z. Jin, Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf. A Physicochem. Eng. Asp. 337, 200–204 (2009)

    Article  CAS  Google Scholar 

  59. L.E.D. Garrec, S. Gori, L. Luo, Poly(N-vinylpyrrolidone)-block-poly(D,Llactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J. Control. Release 99, 83–101 (2004)

    Article  PubMed  CAS  Google Scholar 

  60. E. Fournier, M.H. Dufresne, D.C. Smith, M. Ranger, J.C. leroux, A novel one-step drug-loading procedurefor water-soluble amphiphilic nanocarriers. Pharm. Res. 21, 962–968 (2004)

    Article  CAS  PubMed  Google Scholar 

  61. Y. Zeng, W.G. Pitt, A polymeric micelle system with a hydrolysable segment for drug delivery. J. Biomater. Sci. Polym. 17, 591–604 (2006)

    Article  CAS  Google Scholar 

  62. H. Lee, P.L. Soo, J. Liu, M. Butler, C. Allen, Chapter 1: Polymeric micelles for formulation of anticancer drugs, in Nanotechnology for cancer therapy, ed. by M. M. Amiji (Ed), (CRC Press, Boca Raton, 2007), pp. 317–355

    Google Scholar 

  63. K.V. Butsele, P. Sibreta, C.A. Fustin, J.F. Gohyb, C. Passirani, J.P. Benoitc, Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interface Sci. 329, 235–243 (2009)

    Article  PubMed  CAS  Google Scholar 

  64. B. Ashok, L. Arleth, R.P. Hjelm, I. Rubinstein, Invitrocharacterization of pegylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J. Pharm. Sci. 93, 2476–2487 (2004)

    Article  CAS  PubMed  Google Scholar 

  65. L. Yunhai, C. Xiaohong, L. Mingbiao, L. Zhanggao, X. Wenyuan, Selfassembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J. Colloid Interface Sci. 329, 244–252 (2009)

    Article  CAS  Google Scholar 

  66. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Micelles based on AB block copolymers of poly(ethylene oxide) and poly(beta-benzylL-aspartate). Langmuir 9, 945–949 (1993)

    Article  CAS  Google Scholar 

  67. M. Wilhelm, C.L. Zhao, Y.C. Wang, R.L. Xu, M.A. Winnik, J.L. Mura, Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24, 1033–1040 (1991)

    Article  CAS  Google Scholar 

  68. X. Astafieva, F.A. Zhong, Eisenberg: Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26, 7339–7352 (1993)

    Article  CAS  Google Scholar 

  69. I.L. Shin, S.Y. Kim, Y.M. Lee, C.S. Cho, Y.K. Sung, Methoxy poly(ethylene glycol)/e-caprolactone amphiphilic block copolymeric micelle containing indomethacin, I. Preparation and characterization. J. Control. Release 51, 1–11 (1998)

    Article  CAS  PubMed  Google Scholar 

  70. J. Liu, S. Yang, C.S. Lee, D.L. De Voe, Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis. Electrophoresis 29, 2241–2250 (2008)

    Article  CAS  PubMed  Google Scholar 

  71. A. Hayama, T. Yamamoto, M. Yokoyama, K. Kawano, Y. Hattori, Y. Maitani, Polymeric micelles modified by folate-PEG-lipid for targeted drug delivery to cancer cells in vitro. J. Nanosci. Nanotechnol. 8, 1–6 (2007)

    Google Scholar 

  72. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, T. Okano, Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J. Control. Release 55, 87–98 (1998)

    Article  CAS  PubMed  Google Scholar 

  73. L. Plapied, N. Duhem, A.D. Rieux, V. Préat, Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci. 16, 228–237 (2011)

    Article  CAS  Google Scholar 

  74. R. Duncan, The dawning era of polymer. Nat. Rev. Drug Discov. 2, 347–360 (2003)

    Article  CAS  PubMed  Google Scholar 

  75. H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzym. Regul. 41, 189–207 (2001)

    Article  CAS  Google Scholar 

  76. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy. Mechanism of tumoritropic accumulation of proteins and tha antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    CAS  PubMed  Google Scholar 

  77. Y. Matsumura, E. Chiellini, J. Sunamato, Advances in polymeric micelles for drug delivery and tumor targeting. Biomedical Polymers and Polymer Therapeutics (Springer Link Publication (Book), 2001), pp. 37–52

    Google Scholar 

  78. F. Yuan, M. Delian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, Optical biopsy of cancer: Nanotechnological aspects. Tumori 94, 200–205 (2008)

    Article  Google Scholar 

  79. A. Mahmud, X.B. Xiong, H.M. Aliabadi, A. Lavasanifar, Polymeric micelles for drug targeting. J. Drug Target. 15, 553–584 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. V.P. Torchilin, Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90, 604–610 (2008)

    Article  CAS  PubMed  Google Scholar 

  81. J. Vega, S. Ke, Z. Fan, S. Wallace, C. Charsangavej, C. Li, Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol spacer. Pharm. Res. 20, 826–832 (2003)

    Article  CAS  PubMed  Google Scholar 

  82. X. Wen, Q.P. Wu, S. Ke, L. Ellis, C. Charnsangavej, A.S. Delpassand, S. Wallace, C. Li, Conjugation with (111)In-DTPA-poly(ethylene glycol) improves imaging of anti-EGF receptor antibody C225. J. Nucl. Med. 42, 1530–1537 (2001)

    CAS  PubMed  Google Scholar 

  83. C.P. Leamon, J.A. Reddy, Folate-targeted chemotherapy. Adv. Drug Deliv. Rev. 56, 1127–1141 (2004)

    Article  CAS  PubMed  Google Scholar 

  84. Y. Lu, P.S. Low, Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J. Control. Release 91, 17–29 (2003)

    Article  CAS  PubMed  Google Scholar 

  85. C.J. Avraamides, B. Garmy-Susini, J.A. Varner, Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8, 601–617 (2008)

    Article  CAS  Google Scholar 

  86. K. Greish, Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15, 457–464 (2007)

    Article  CAS  PubMed  Google Scholar 

  87. N. Nasongkla, X. Shuai, H. Ai, B.D. Weinberg, J. Pink, D.A. Boothman, J. Gao, cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. Engl. 43, 6323–6327 (2004)

    Article  CAS  PubMed  Google Scholar 

  88. S.C. Kim, D.W. Kim, Y.H. Shim, J.S. Bang, H.S. Oha, S.W. Kim, M.H. Seo, In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release 72, 191–202 (2001)

    Article  CAS  PubMed  Google Scholar 

  89. Y.W. Cho, J. Lee, S.C. Lee, K.M. Huh, K. Park, Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Control. Release 97, 249–257 (2004)

    Article  CAS  PubMed  Google Scholar 

  90. C.F. Mu, P. Balakrishnan, F.D. Cui, Y.M. Yin, Y.B. Lee, H.G. Choi, C.S. Yong, S.J. Chung, C.K. Shim, D.D. Kim, The effects of mixed MPEG–PLA/Pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31, 2371–2379 (2010)

    Article  CAS  PubMed  Google Scholar 

  91. K. Raza, N. Kumar, C. Misra, L. Kaushik, S.K. Guru, P. Kumar, R. Malik, S. Bhushan, O.P. Katare, Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicityand better pharmacokinetic profile. Int. J. Biol. Macromol. 88, 206–212 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. H.S. Yoo, E.A. Lee, T.G. Park, Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Control. Release 82, 17–27 (2002)

    Article  CAS  PubMed  Google Scholar 

  93. H.S. Yoo, T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96, 273–283 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. Z. Wang, H. Liu, X. Shu, L. Zheng, L. Chen, A reduction-degradable polymer prodrug for cisplatin delivery: Preparation, in vitro and in vivo evaluation. Colloids Surf. B: Biointerfaces 136, 160–167 (2015)

    Article  CAS  PubMed  Google Scholar 

  95. I. Khan, A. Gothwal, A.K. Sharma, P. Kesharwani, L. Gupta, A.K. Iyer, U. Gupta, PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 33(2), 159–193 (2016)

    Article  PubMed  Google Scholar 

  96. O. Soga, C.F. van Nostrum, M. Fens, C.J.F. Rijcken, R.M. Schiffelers, G. Storm, W.E. Hennink, Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release 103, 341–353 (2005)

    Article  CAS  PubMed  Google Scholar 

  97. W.Y. Seow, J.X. Xue, Y.Y. Yang, Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials 28, 1730–1740 (2007)

    Article  CAS  PubMed  Google Scholar 

  98. Y. Liu, J. Sun, W. Cao, J. Yang, H. Lian, X. Li, Y. Sun, Y. Wang, S. Wang, Z. He, Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharm. 421, 160–169 (2011)

    Article  CAS  PubMed  Google Scholar 

  99. L. Zhang, Y. He, G. Ma, C. Song, H. Sun, L. Zhang, Y. He, G. Ma, C. Song, H. Sun, Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers:in vitro and in vivo evaluation. Nanomed: Nanotechnol. Biol. Med. 8, 925–934 (2012)

    Article  CAS  Google Scholar 

  100. Y. Mi, Y. Liu, S.S. Feng, Formulation of Docetaxel by folic acid-conjugated D-a-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials 32, 4058–4066 (2011)

    Article  CAS  PubMed  Google Scholar 

  101. L. Chen, X. Sha, X. Jiang, Y. Chen, Q. Ren, X. Fang, Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int. J. Nanomedicine 8, 73–84 (2013)

    PubMed  PubMed Central  Google Scholar 

  102. H.G. Keizer, H.M. Pinedo, G.J. Schuurhuis, H. Joenje, Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharma. Ther. 47, 219–231 (1990)

    Article  CAS  Google Scholar 

  103. H.S. Yoo, T.G. Park, Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J. Control. Release 70, 63–70 (2001)

    Article  CAS  PubMed  Google Scholar 

  104. M. Talelli, M. Iman, A.K. Varkouhi, C.J.F. Rijcken, R.M. Schiffelers, T. Etrych, K. Ulbrich, C.F. van Nostrum, T. Lammers, G. Storm, W.E. Hennink, Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 31, 7797–7804 (2010)

    Article  CAS  PubMed  Google Scholar 

  105. D.P. Gately, S.B. Howell, Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer 67, 1171–1176 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. N. Nishiyama, Y. Kato, Y. Sugiyama, K. Kataoka, Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 18, 1035–1041 (2001)

    Article  CAS  PubMed  Google Scholar 

  107. H.S. Oberoi, N.V. Nukolova, F.C. Laquer, L.Y. Poluektova, J. Huang, Y. Alnouti, M. Yokohira, L.L. Arnold, A.V. Kabanov, S.M. Cohen, T.K. Bronich, Cisplatin-loaded core cross-linked micelles: comparative pharmacokinetics, antitumor activity, and toxicity in mice. Int. J. Nanomedicine 7, 2557–2571 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. A.V. Kabanov, V.Y. Alakhov, Micelles of amphiphilic block copolymers as vehicles for drug delivery, in Amphiphilic block copolymers: self-assembly and applications, ed. by P. Alexandridis, B. Lindman (Eds), (Elsevier, Netherlands, 1997), pp. 1–31

    Chapter  Google Scholar 

  109. A.K. Sharma, L. Zhang, S. Li, Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J. Control. Release 131, 220–227 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. C.Y. Wu, L.Z. Benet, Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22, 11–23 (2005)

    Article  CAS  PubMed  Google Scholar 

  111. W. Xu, P. Ling, T. Zhang, Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 34, 315–327 (2013)

    Google Scholar 

  112. H. Gelderblom, J. Verweij, K. Nooter, A. Sparreboom, E.L. Cremophor, The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590–1598 (2001)

    Article  CAS  PubMed  Google Scholar 

  113. A.N. Lukyanov, V.P. Torchilin, Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev. 56, 1273–1289 (2004)

    Article  CAS  PubMed  Google Scholar 

  114. K.K. Gill, S. Nazzal, A. Kaddoumi, Paclitaxel loaded PEG5000–DSPE micelles as pulmonary delivery platform: formulation characterization tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur. J. Pharm. Biopharm. 79, 276–228 (2011)

    Article  CAS  PubMed  Google Scholar 

  115. G. Gaucher, P. Satturwar, M.C. Jones, A. Furtos, J.C. Leroux, Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm. 76, 147–158 (2010)

    Article  CAS  PubMed  Google Scholar 

  116. L. Bromberg, Polymeric micelles in oral chemotherapy. J. Control. Release 128, 99–112 (2008)

    Article  CAS  PubMed  Google Scholar 

  117. S. Lehrman, Virus treatment questioned after gene therapy death. Nature 401, 517–518 (1999)

    Article  CAS  PubMed  Google Scholar 

  118. E. Marshall, Clinical trials-gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999)

    Article  CAS  PubMed  Google Scholar 

  119. C.L. Gebhart, A.V. Kabanov, Evaluation of polyplexes as gene transfer agents. J. Control. Release 73, 401–416 (2001)

    Article  CAS  PubMed  Google Scholar 

  120. T. Merdan, J. Kopecek, T. Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54, 715–758 (2002)

    Article  CAS  PubMed  Google Scholar 

  121. T. Niidome, L. Huang, Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9, 1647–1652 (2002)

    Article  CAS  PubMed  Google Scholar 

  122. D.J. Glover, H.J. Lipps, D.A. Jans, Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6, 299–310 (2002)

    Article  CAS  Google Scholar 

  123. E. Wagner, J. Kloeckner, Gene delivery using polymer therapeutics. Polym. Ther. I Polym. Drugs Conjug. Gene Deliv. Syst. 192, 135–173 (2006)

    CAS  Google Scholar 

  124. T. Kawano, T. Okuda, T. Niidome, Biodistribution of DNA-complex of dendritic poly(L-lysine) after intravenous injection. Mol. Ther. 9, S315 (2004)

    Google Scholar 

  125. K. Kogure, H. Akita, Y. Yamada, H. Harashima, Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 60, 559–571 (2008)

    Article  CAS  PubMed  Google Scholar 

  126. R.Z. Renno, J.W. Miller, Photosensitizer delivery for photodynamic therapy of choroidal neovascularization. Adv. Drug Deliv. Rev. 52, 63–78 (2001)

    Article  CAS  PubMed  Google Scholar 

  127. M. Guo, H. Mao, Y. Li, A. Zhu, H. He, H. Yang, Y. Wang, X. Tian, C. Ge, Q. Peng, Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35, 4656–4666 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. H. Yang, H. Mao, Z. Wan, A. Zhu, M. Guo, Y. Li, X. Li, J. Wan, X. Yang, X. Shuai, Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 34, 9124–9133 (2013)

    Article  CAS  PubMed  Google Scholar 

  129. R.R. Patil, J. Yu, S.R. Banerjee, Y. Ren, D. Leong, X. Jiang, M. Pomper, B. Tsui, D.L. Kraitchman, H.Q. Mao, Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol. Ther. 19, 1626–1635 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. V.P. Torchilin, M.D. Frank-Kamenetsky, G.L. Wolf, CT visualization of blood pool in rat by using long circulating, iodine containing micelles. Acad. Radiol. 6, 61–65 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful and would like to acknowledge the University Grants Commission (UGC) New Delhi, India, and Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India, for providing research funding to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khan, I., Gothwal, A., Mishra, G., Gupta, U. (2018). Polymeric Micelles. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics