Skip to main content

From Micro- to Nano-objects and from Giga- to Terahertz Frequency Range: Quasi-optical Resonant Diagnostics of Objects

  • Chapter
  • First Online:
Semiconductor Nanotechnology

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1675 Accesses

Abstract

A highly sensitive method of contactless microwave diagnostics is considered that allows to examine the properties of small objects of different shapes and permittivities and small local inhomogeneities of artificial (composite) and natural materials. The method is based on multiple interactions of radio waves with an examined object in an open quasi-optical resonator. It can be used in a wide frequency range, from units of gigahertz to several tens of terahertz, unachievable by other methods.

The capabilities of the method are illustrated by detection of local nanostructured inhomogeneities of super thin threadlike wires under a glass insulation layer, measurement of polarizabilities of small spherical aerogels from carbon nanotubes, technological diagnostics of thin film thickness, and measurement of inhomogeneities of the reflection coefficient of sheet composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dicke RH (1958) Molecular amplification and generation systems and methods. USA

    Google Scholar 

  2. Yang X, Kweun JM, Kim YY (2018) Theory for perfect transmodal Fabry-Perot interferometer. Sci Rep 8(1):69. https://doi.org/10.1038/s41598-017-18408-5

    Article  CAS  Google Scholar 

  3. Liu D-Y, Li M-H, Zhai X-M, Yao L-F, Dong J-F (2014) Enhanced asymmetric transmission due to Fabry-Perot-like cavity. Opt Express 22(10):11707–11712 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24921293

    Article  Google Scholar 

  4. Kweun JM, Lee HJ, Oh JH, Seung HM, Kim YY (2017) Transmodal Fabry-Pérot resonance: theory and realization with elastic metamaterials. Phys Rev Lett 118(20):205901. https://doi.org/10.1103/PhysRevLett.118.205901

    Article  Google Scholar 

  5. Xiao Z, Liu D, Ma X, Wang Z (2015) Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Opt Express 23(6):7053–7061 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25837050

    Article  CAS  Google Scholar 

  6. Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001) Fabry – Perot interference in a nanotube electron waveguide. Nature 411(6838):665–669. https://doi.org/10.1038/35079517

    Article  CAS  Google Scholar 

  7. Li C, Lan T, Yu X, Bo N, Dong J, Fan S (2017) Room-temperature pressure-induced optically-actuated Fabry-Perot nanomechanical resonator with multilayer graphene diaphragm in air. Nanomaterials 7(11):366. https://doi.org/10.3390/nano7110366

    Article  CAS  Google Scholar 

  8. Culshaw W (1962) Measurement of permittivity and dielectric loss with millimetre-wave Fabry-Perot interferometer. Proc IEE – B Electron Commun Eng 109(23):6. https://doi.org/10.1049/pi-b-2.1962.0140

    Article  Google Scholar 

  9. Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J et al (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50(4):43001. https://doi.org/10.1088/1361-6463/50/4/043001

    Article  CAS  Google Scholar 

  10. Sun W, Yang B, Wang X, Zhang Y, Donnan R (2013) Accurate determination of terahertz optical constants by vector network analyzer of Fabry–Perot response. Opt Lett 38(24):5438. https://doi.org/10.1364/OL.38.005438

    Article  Google Scholar 

  11. Gao YC, Jones CR, Dutta JM (2009) Phase locked BWO system for open resonator measurement in D-Band. IEEE Microw Wirel Comp Lett 19(9):599–601. https://doi.org/10.1109/lmwc.2009.2027098

    Article  Google Scholar 

  12. IEEE P1785.2/D1n, April 2015 : IEEE draft standard for rectangular metallic waveguides and their interfaces for frequencies of 110 GHz and above – part 2: waveguide interfaces (2015) IEEE. Retrieved from http://ieeexplore.ieee.org/document/7109075/

  13. IEEE Std 1785.3-2016 : IEEE recommended practice for rectangular metallic waveguides and their interfaces for frequencies of 110 GHz and above – part 3: recommendations for performance and uncertainty specifications (2016) IEEE. Retrieved from http://ieeexplore.ieee.org/document/7589955/

  14. Kotelnikov I, Altynnikov A, Mikhaylov A, Medvedeva V, Kozyrev A (2016) Electrodeless measurement technique of complex dielectric permittivity of high-K dielectric films in the millimeter wavelength range. Prog Electromagn Res M 52:161–167. https://doi.org/10.2528/pierm16100505

    Article  Google Scholar 

  15. Kogelnik H, Li T (1966) Laser beams and resonators. Proc IEEE 54(10):1312–1329. https://doi.org/10.1109/PROC.1966.5119

    Article  Google Scholar 

  16. Shalygina EE, Kharlamova AM, Shalygin AN, Molokanov VV, Umnov PP, Umnova NV, Chueva TR (2016) Structural and magnetic properties of “thick” microwires produced by the modernized Ulitovsky–tailor method. J Magn Magn Mater 415:106–110. https://doi.org/10.1016/J.JMMM.2016.01.056

    Article  CAS  Google Scholar 

  17. Kraus L, Frait Z, Ababei G, Chayka O, Chiriac H (2012) Ferromagnetic resonance in submicron amorphous wires. J Appl Phys 111(5):53924. https://doi.org/10.1063/1.3693031

    Article  CAS  Google Scholar 

  18. Ramayya EB, Vasileska D, Goodnick SM, Knezevic I (2007) Electron mobility in silicon nanowires. IEEE Trans Nanotechnol 6(1):113–117. https://doi.org/10.1109/TNANO.2006.888521

    Article  Google Scholar 

  19. Zhukov A, Shuvaeva E, Kaloshkin S, Churyukanova M, Kostitsyna E, Zhdanova M et al (2016) Studies of interfacial layer and its effect on magnetic properties of glass-coated microwires. J Electron Mater 45(5):2381–2387. https://doi.org/10.1007/s11664-015-4319-y

    Article  CAS  Google Scholar 

  20. Huang Q, Lilley CM, Bode M, Divan RS (2008) Electrical properties of Cu nanowires. In: 2008 8th IEEE conference on nanotechnology. IEEE, pp 549–552. https://doi.org/10.1109/NANO.2008.163

  21. Steinhoegl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2003). Scaling laws for the resistivity increase of sub-100 nm interconnects. In: International conference on simulation of semiwire processes and devices. SISPAD 2003, IEEE, pp 27–30. https://doi.org/10.1109/SISPAD.2003.1233629

  22. Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42. https://doi.org/10.1080/00018735200101151

    Article  Google Scholar 

  23. Mayadas AF, Shatzkes M, Janak JF (1969) Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl Phys Lett 14(11):345–347. https://doi.org/10.1063/1.1652680

    Article  Google Scholar 

  24. Marin P, Cortina D, Hernando A (2008) Electromagnetic wave absorbing material based on magnetic microwires. IEEE Trans Magn 44(11):3934–3937. https://doi.org/10.1109/tmag.2008.2002472

    Article  CAS  Google Scholar 

  25. Weinstein LA (1969) Open resonators and open waveguides. Golem Press, Boulder

    Google Scholar 

  26. Dorofeev IO, Dunaevskii GE (2012) Losses in an open microwave resonator with an ultrathin cylinder. Russ Phys J 54(10):1112–1120

    Article  Google Scholar 

  27. Vázquez M, Adenot-Engelvin A-L (2009) Glass-coated amorphous ferromagnetic microwires at microwave frequencies. J Magn Magn Mater 321(14):2066–2073. https://doi.org/10.1016/J.JMMM.2008.10.040

    Article  Google Scholar 

  28. Dorofeev IO, Dunaevskii GE, Lebedev IA, Polozov GG (2012) Open Quasioptic microwave resonator with a cast glass-coated magnetic microwire. Russ Phys J 55(9/2):30–33 (In Russian)

    Google Scholar 

  29. Dorofeev IO, Dunaevskii GE (2014) A device for the quasi-optical resonance diagnostics of a glass-coated cast microwire. Russ J Nondestruct Test 50(12):741–747. https://doi.org/10.1134/s1061830914120031

    Article  Google Scholar 

  30. Dorofeev IO, Dunaevskii GE, Larin VS (2015) Scattering of the field of an open quasi-optical microwave resonator on microwire with inhomogeneities. Russ Phys J 58(8):1167–1171. https://doi.org/10.1007/s11182-015-0627-1

    Article  Google Scholar 

  31. Lopez-Dominguez V, Garcia MA, Marin P, Hernando A (2017) Tuning metamaterials by using amorphous magnetic microwires. Sci Rep 7:9. https://doi.org/10.1038/s41598-017-09665-5

    Article  CAS  Google Scholar 

  32. Nesterenko MV (2010) Analytical methods in the theory of thin impedance vibrators. Prog Electromag Res B 21:299–328

    Google Scholar 

  33. Dorofeev IO, Dunaevskii GE (2017) Resonance characteristics for microwire pieces as elements of composite materials. Russ Phys J 59(12):2080–2086. https://doi.org/10.1007/s11182-017-1017-7

    Article  Google Scholar 

  34. Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60(24):17136–17149. https://doi.org/10.1103/PhysRevB.60.17136

    Article  CAS  Google Scholar 

  35. Kuznetsov VL, Suslyaev VI, Dorofeev IO, Kazakova MA, Moseenkov SI, Smirnova TE, Krasnikov DV (2015) Investigation of electromagnetic properties of MWCNT aerogels produced via catalytic ethylene decomposition. Phys Status Solidi B-Basic Solid State Phys 252(11):2519–2523. https://doi.org/10.1002/pssb.201552254

    Article  CAS  Google Scholar 

  36. Krasnikov DV, Dorofeev IO, Smirnova TE, Suslyaev VI, Kazakova MA, Moseenkov SI, Kuznetsov VL (2017) Electromagnetic interaction between spherical aerogels of multi-walled carbon nanotubes. Phys Status Solidi B:1700256. https://doi.org/10.1002/pssb.201700256

    Article  CAS  Google Scholar 

  37. Dunaevskii GE (2006) An open Quasioptical transformers. Izdatelstvo NTL, Tomsk (in Russian)

    Google Scholar 

  38. Valitov RA, Dubko SF, Kamyshan VV, Kuzmichev VM, Makarenko VI, Sokolov AV, Sheyko VP (1969) In: Valitov RA (ed) Submillimeter wave technology. Sovetskoe Radio, Moscow (in Russian)

    Google Scholar 

  39. Yang BB, Katz SL, Willis KJ, Weber MJ, Knezevic I, Hagness SC, Booske JH (2012) A high-Q terahertz resonator for the measurement of electronic properties of wires and low-loss dielectrics. IEEE Trans Tera Sci Tech 2(4):449–459. https://doi.org/10.1109/TTHZ.2012.2199578

    Article  Google Scholar 

  40. Suzuki H, Kamijo T (2008) Millimeter-wave measurement of complex permittivity by perturbation method using open resonator. IEEE Trans Instrum Meas 57(12):2868–2873. https://doi.org/10.1109/tim.2008.926448

    Article  Google Scholar 

  41. Zhang X-C, Xu J (2010) Introduction to THz wave photonics. Springer US, Boston. https://doi.org/10.1007/978-1-4419-0978-7

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory Dunaevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunaevsky, G., Dorofeev, I. (2018). From Micro- to Nano-objects and from Giga- to Terahertz Frequency Range: Quasi-optical Resonant Diagnostics of Objects. In: Goodnick, S., Korkin, A., Nemanich, R. (eds) Semiconductor Nanotechnology. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91896-9_7

Download citation

Publish with us

Policies and ethics