Skip to main content

Signal Processing for Wireless Transceivers

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

The data rates as well as quality of service (QoS) requirements for rich user experience in wireless communication services are continuously growing. While consuming a major portion of the energy needed by wireless devices, the wireless transceivers have a key role in guaranteeing the needed data rates with high bandwidth efficiency. The cost of wireless devices also heavily depends on the transmitter and receiver technologies. In this chapter, we concentrate on the problem of transmitting information sequences efficiently through a wireless channel and performing reception such that it can be implemented with state of the art signal processing tools. The operations of the wireless devices can be divided to RF and baseband (BB) processing. Our emphasis is to cover the BB part, including the coding, modulation, and waveform generation functions, which are mostly using the tools and techniques from digital signal processing. But we also look at the overall transceiver from the RF system point of view, covering issues like frequency translations and channelization filtering, as well as emerging techniques for mitigating the inevitable imperfections of the analog RF circuitry through advanced digital signal processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terminology reflects the fact that the transform length in the core OFDM system is typically a power of two, whereas also other lengths need to be considered for the SC symbol block in order to reach sufficient flexibility.

  2. 2.

    This follows from the fact that uniform subcarrier interleaving corresponds to pulse repetition in time domain.

References

  1. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle: From theory to practise I, May (2001)

    Google Scholar 

  2. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle: From theory to practise II, Sep (2001)

    Google Scholar 

  3. Abdelaziz, M., Anttila, L., Kiayani, A., Valkama, M.: Decorrelation-based concurrent digital predistortion with a single feedback path. IEEE Transactions on Microwave Theory and Techniques PP(99), 1–14 (2017). https://doi.org/10.1109/TMTT.2017.2706688

    Article  Google Scholar 

  4. Abdelaziz, M., Anttila, L., Tarver, C., Li, K., Cavallaro, J.R., Valkama, M.: Low-complexity subband digital predistortion for spurious emission suppression in noncontiguous spectrum access. IEEE Transactions on Microwave Theory and Techniques 64(11), 3501–3517 (2016). https://doi.org/10.1109/TMTT.2016.2602208

    Article  Google Scholar 

  5. Abdelaziz, M., Fu, Z., Anttila, L., Wyglinski, A.M., Valkama, M.: Digital predistortion for mitigating spurious emissions in spectrally agile radios. IEEE Communications Magazine 54(3), 60–69 (2016). https://doi.org/10.1109/MCOM.2016.7432149

    Article  Google Scholar 

  6. Abdoli, J., Jia, M., Ma, J.: Filtered OFDM: A new waveform for future wireless systems. In: IEEE Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 66–70 (2015). https://doi.org/10.1109/SPAWC.2015.7227001

  7. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal, Elsevier 50, 2127–2159 (2006)

    Article  MATH  Google Scholar 

  8. Allen, M., Marttila, J., Valkama, M.: Digital post-processing for reducing A/D converter nonlinear distortion in wideband radio receivers. In: Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pp. 1111 –1114 (2009)

    Google Scholar 

  9. Anderson, J., Mohan, S.: Source and channel coding: An algorithmic approach. IEEE Trans. Commun. 32(2), 169–176 (1984)

    Article  Google Scholar 

  10. Anttila, L., Händel, P., Valkama, M.: Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters. IEEE Transactions on Microwave Theory and Techniques 58(4), 730–739 (2010)

    Article  Google Scholar 

  11. Anttila, L., Valkama, M., Renfors, M.: Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 57(4), 2099 –2113 (2008)

    Article  Google Scholar 

  12. Anttila, L., Zou, Y., Valkama, M.: Digital compensation and calibration of I/Q gain and phase imbalances, chap. 16. Cambridge University Press, Cambridge, UK (2011)

    Google Scholar 

  13. Arkesteijn, V., Klumperink, E., Nauta, B.: Jitter requirements of the sampling clock in software radio receivers. IEEE Trans. Circuits Syst. II 53(2), 90 – 94 (2006)

    Article  Google Scholar 

  14. Aschbacher, E.: Digital predistortion of microwave power amplifiers. Ph.D. thesis, Technishe Universitat Wien (2004)

    Google Scholar 

  15. Auer, G.: Bandwidth efficient 3D pilot design for MIMO-OFDM. In: Proc. European Wireless Conf. Lucca, Italy (2010)

    Google Scholar 

  16. Auras, D., Leupers, R., Ascheid, G.: Efficient VLSI architecture for matrix inversion in soft-input soft-output MMSE MIMO detectors. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 1018–1021. Melbourne, Australia (2014)

    Google Scholar 

  17. Auras, D., Leupers, R., Ascheid, G.: A novel reduced-complexity soft-input soft-output MMSE MIMO detector: Algorithm and efficient VLSI architecture. In: Proc. IEEE Int. Conf. Commun., pp. 4722–4728. Sydney, Australia (2014)

    Google Scholar 

  18. Bala, E., Li, J., Yang, R.: Shaping spectral leakage: A novel low-complexity transceiver architecture for cognitive radio. IEEE Vehicular Technology Magazine 8(3), 38–46 (2013). https://doi.org/10.1109/MVT.2013.2269178

    Article  Google Scholar 

  19. Baltar, L., Schaich, F., Renfors, M., Nossek, J.: Computational complexity analysis of advanced physical layers based on multicarrier modulation. In: Proc. Future Network & Mobile Summit, pp. 1–8. Warsaw, Poland (2011)

    Google Scholar 

  20. Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., Ugolini, A.: Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Processing Mag. 31(6), 80–93 (2014). https://doi.org/10.1109/MSP.2014.2337391

    Article  Google Scholar 

  21. Bassam, S., Ghannouchi, F., Helaoui, M.: 2-D Digital Predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques 59, 2547–2553 (Oct. 2011)

    Article  Google Scholar 

  22. Benedetto, S., Biglieri, E.: Principles of Digital Transmission; With Wireless Applications. Kluwer Academic Publishers, New York (1999)

    MATH  Google Scholar 

  23. Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Trans. Commun. 50(6), 947–955 (2002)

    Article  Google Scholar 

  24. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turbo codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  25. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error correcting coding and decoding: Turbo codes. In: Proc. IEEE Int. Conf. Commun., vol. 2, pp. 1064–1070. Geneva, Switzerland (1993)

    Google Scholar 

  26. Bingham, J.: Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine 28(5), 5–14 (1990)

    Article  Google Scholar 

  27. Boelcskei, H., Gesbert, D., Papadias, C.B., van der Veen, A.J.: Space-Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge University Press, Cambridge, UK (2006)

    Book  MATH  Google Scholar 

  28. Borgerding, M.: Turning overlap-save into a multiband mixing, downsampling filter bank. IEEE Signal Processing Mag. pp. 158–162 (2006)

    Article  Google Scholar 

  29. Braithwaite, R.: Closed-loop digital predistortion (DPD) using an observation path with limited bandwidth. IEEE Transactions on Microwave Theory and Techniques 63, no. 2, 726–736 (Feb. 2015)

    Article  Google Scholar 

  30. Brandes, S., Cosovic, I., Schnell, M.: Sidelobe suppression in OFDM systems by insertion of cancellation carriers. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 152–156. Los Angeles, CA, USA (2005)

    Google Scholar 

  31. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bölcskei, H.: VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE J. Solid-State Circuits 40(7), 1566–1577 (2005)

    Article  Google Scholar 

  32. Burg, A., Haene, S., Perels, D., Luethi, P., Felber, N., Fichtner, W.: Algorithm and VLSI architecture for linear MMSE detection in MIMO–OFDM systems. In: Proc. IEEE Int. Symp. Circuits and Systems. Kos, Greece (2006)

    Google Scholar 

  33. Cabarkapa, M., Neskovic, N., Budimir, D.: A Generalized 2-D linearity enhancement architecture for concurrent dual-band wireless transmitters. IEEE Transactions on Microwave Theory and Techniques 61(12), 4579–4590 (2013). https://doi.org/10.1109/TMTT.2013.2287679

    Article  Google Scholar 

  34. Cavers, J.K.: An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Trans. Veh. Technol. 40(4), 686–693 (1991)

    Article  Google Scholar 

  35. Chang, R.: High-speed multichannel data transmission with bandlimited orthogonal signals. Bell Syst. Tech. J. 45, 1775–1796 (1966)

    Article  Google Scholar 

  36. Chen, H.M., Chen, W.C., Chung, C.D.: Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios. IEEE Trans. Wireless Commun. 10(5), 1416 – 1427 (2011)

    Article  Google Scholar 

  37. Chen, L., Chen, W., Zhang, X., Yang, D.: Analysis and simulation for spectrum aggregation in LTE-advanced system. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 1–6. Anchorage, AK, USA (2009)

    Google Scholar 

  38. Cherubini, G., Eleftheriou, E., Olcer, S.: Filtered multitone modulation for VDSL. In: Proc. IEEE Global Telecommun. Conf., pp. 1139–1144 (1999)

    Google Scholar 

  39. CISCO: Visual networking index (VNI) mobile white paper [online]. available at http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (2017)

  40. Collings, I., Butler, M., McKay, M.: Low complexity receiver design for MIMO bit-interleaved coded modulation. In: Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, pp. 1993–1997. Sydney, Australia (2004)

    Google Scholar 

  41. Cosovic, I., Brandes, S., Schnell, M.: Subcarrier weighting: a method for sidelobe suppression in OFDM systems. IEEE Commun. Lett. 10(6), 444–446 (2006)

    Article  Google Scholar 

  42. Coulson, A., Vaughan, R., Poletti, M.: Frequency-shifting using bandpass sampling. IEEE Trans. Signal Processing 42(6), 1556 –1559 (1994)

    Article  Google Scholar 

  43. Crochiere, R., Rabiner, L.: Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA (1983)

    Google Scholar 

  44. Crols, J., Steyaert, M.: CMOS Wireless Transceiver Design. Kluwer, Dordrecht, The Netherlands (1997)

    MATH  Google Scholar 

  45. Dahlman, E., Parkvall, S., Sköld, J.: 4G LTE / LTE-Advanced for Mobile Broadband. Academic Press (2011)

    Google Scholar 

  46. Damen, M.O., Gamal, H.E., Caire, G.: On maximum–likelihood detection and the search for the closest lattice point. IEEE Trans. Inform. Theory 49(10), 2389–2402 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: A unifying theory and numerical methods for characterization. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 47(5), 655 –674 (2000)

    Article  Google Scholar 

  48. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  49. Ding, L.: Digital predistortion of power amplifiers for wireless applications. Ph.D. thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology (2004)

    Google Scholar 

  50. Dufrêne, K., Boos, Z., Weigel, R.: Digital adaptive IIP2 calibration scheme for CMOS downconversion mixers. IEEE J. Solid-State Circuits 43(11), 2434–2445 (2008)

    Article  Google Scholar 

  51. EMPHATIC: (2015). INFSO-ICT-211887 Project EMPHATIC Deliverables [Online]. Available at http://www.ict-emphatic.eu

    Google Scholar 

  52. Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar, A., Eidson, B.: Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–66 (2002)

    Article  Google Scholar 

  53. Farhang-Boroujeny, B., Kempter, R.: Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Commun. Mag. 46(4), 80–85 (2008)

    Article  Google Scholar 

  54. Faulkner, M.: The effect of filtering on the performance of OFDM systems. IEEE Trans. Veh. Technol. 49(9), 1877–1884 (2000)

    Article  Google Scholar 

  55. Faulkner, M., Mattsson, T., Yates, W.: Automatic adjustment of quadrature modulators. IEE Electron. Lett. 27(3), 214 –216 (1991)

    Article  Google Scholar 

  56. Fessler, J., Hero, A.: Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Processing 42(10), 2664–2677 (1994)

    Article  Google Scholar 

  57. Fettweis, G., Löhning, M., Petrovic, D., Windisch, M., Zillmann, P., Rave, W.: Dirty RF: A new paradigm. Int. J. Wireless Inform. Networks 14, 138–148 (2007)

    Article  Google Scholar 

  58. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(5), 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  59. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  60. Frerking, M.E.: Digital Signal Processing in Communication Systems. Chapman & Hall, New York, USA (1994)

    Book  Google Scholar 

  61. Gallager, R.: Low-Density Parity-Check Codes. MIT Press, Cambridge, USA (1963)

    MATH  Google Scholar 

  62. 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network: Evolved universal terrestrial radio access E-UTRA; physical channels and modulation TS 36.211 (version 8.5.0). Tech. rep. (2008)

    Google Scholar 

  63. Gerzaguet, R., Bartzoudis, N., Baltar, L.G., Berg, V., Doré, J.B., Kténas, D., Font-Bach, O., Mestre, X., Payaró, M., Färber, M., Roth, K.: The 5G candidate waveform race: A comparison of complexity and performance. EURASIP Journal on Wireless Communications and Networking 2017(1), 13 (2017). https://doi.org/10.1186/s13638-016-0792-0

    Article  Google Scholar 

  64. Gilabert, P.L., Montoro, G.: 3-D distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization. IEEE Transactions on Microwave Theory and Techniques 63(2), 638–648 (2015). https://doi.org/10.1109/TMTT.2014.2387825

    Article  Google Scholar 

  65. Girotto, M., Tonello, A.M.: Orthogonal design of cyclic block filtered multitone modulation. IEEE Transactions on Communications 64(11), 4667–4679 (2016). https://doi.org/10.1109/TCOMM.2016.2606624

    Article  Google Scholar 

  66. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York, USA (2005)

    Book  Google Scholar 

  67. Guo, Z., Nilsson, P.: Algorithm and implementation of the K-best sphere decoding for MIMO detection. IEEE J. Select. Areas Commun. 24(3), 491–503 (2006)

    Article  Google Scholar 

  68. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, MA, USA (1996)

    Google Scholar 

  69. Hanzo, L., Liew, T., Yeap, B.: Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels. John Wiley & Sons, Chichester, UK (2002)

    Book  Google Scholar 

  70. Hara, S., Prasad, R.: Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels. IEEE Trans. Veh. Technol. 48(5), 1584–1595 (1999)

    Article  Google Scholar 

  71. fred harris, Venosa, E., Chen, X., Renfors, M.: Cascade linear phase recursive half-band filters implement the most efficient digital down-converter. In: SDR’11 - Wireless Innovation Forum Conference on Communications Technologies and Software Defined Radio. Washington DC, USA (2011)

    Google Scholar 

  72. harris, f., McGwier, R., Egg, B.: A versatile multichannel filter bank with multiple channel bandwidths. In: Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, pp. 1 –5. Cannes, France (2010)

    Google Scholar 

  73. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA (1996)

    Google Scholar 

  74. Hentschel, T.: Sample rate conversion in software configurable radios. Artech House, Norwood, MA, USA (2002)

    Google Scholar 

  75. Hirosaki, B.: An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Trans. Commun. 29(7), pp. 982 – 989 (1981)

    Article  Google Scholar 

  76. Ho, Y.C., Staszewski, R.B., Muhammad, K., Hung, C.M., Leipold, D., Maggio, K.: Charge-domain signal processing of direct RF sampling mixer with discrete-time filter in Bluetooth and GSM receivers. EURASIP J. Wireless Comm. and Netw. 2006(3), 1–14 (2006)

    Article  Google Scholar 

  77. Hochwald, B., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Commun. 51(3), 389–399 (2003)

    Article  Google Scholar 

  78. Hogenauer, E.: An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust., Speech, Signal Processing 29(2), 155 – 162 (1981)

    Article  Google Scholar 

  79. Huang, Y., Ritcey, J.A.: Joint iterative channel estimation and decoding for bit-interleaved coded modulation over correlated fading channels. IEEE Trans. Wireless Commun. 4(5), 2549–2558 (2005)

    Article  Google Scholar 

  80. Ihalainen, T., Ikhlef, A., Louveaux, J., Renfors, M.: Channel equalization for multi-antenna FBMC/OQAM receivers. IEEE Trans. Veh. Technol. 60(5), 2070–2085 (2011)

    Article  Google Scholar 

  81. Jelinek, F., Anderson, J.: Instrumentable tree encoding of information sources. IEEE Trans. Inform. Theory 17(1), 118–119 (1971)

    Article  MATH  Google Scholar 

  82. Jiang, T., Wu, Y.: An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast. 54(2), 257–268 (2008)

    Article  Google Scholar 

  83. Juntti, M., Glisic, S.: Advanced CDMA for wireless communications. In: S.G. Glisic, P.A. Leppänen (eds.) Wireless Communications: TDMA Versus CDMA, chap. 4, pp. 447–490. Kluwer (1997)

    Google Scholar 

  84. Katz, A.: Linearization: reducing distortion in power amplifiers. IEEE Microwave 2(4), 37 –49 (2001)

    Article  Google Scholar 

  85. Katz, A., Gray, R., Dorval, R.: Truly wideband linearization. IEEE Microwave Magazine 10(7), 20–27 (2009)

    Article  Google Scholar 

  86. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA (1993)

    MATH  Google Scholar 

  87. Keehr, E., Hajimiri, A.: Equalization of third-order intermodulation products in wideband direct conversion receivers. IEEE J. Solid-State Circuits 43(12), 2853 –2867 (2008)

    Article  Google Scholar 

  88. Keehr, E., Hajimiri, A.: Successive regeneration and adaptive cancellation of higher order intermodulation products in RF receivers. IEEE Trans. Microwave Theory Tech. 59(5), 1379 –1396 (2011)

    Article  Google Scholar 

  89. Kenington, P.B.: Linearized transmitters: An enabling technology for software defined radio. IEEE Communications Magazine 40(2), 156–162 (2002)

    Article  Google Scholar 

  90. Ketonen, J., Juntti, M., Cavallaro, J.: Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Trans. Signal Processing 58(6), 3360–3372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  91. Ketonen, J., Juntti, M., Ylioinas, J.: Decision directed channel estimation for reducing pilot overhead in LTE-A. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., pp. 1503–1507. Pacific Grove, USA (2010)

    Google Scholar 

  92. Kim, J., Roblin, P., Chaillot, D., Xie, Z.: A generalized architecture for the frequency-selective digital predistortion linearization technique. IEEE Transactions on Microwave Theory and Techniques 61, 596–605 (Jan. 2013)

    Article  Google Scholar 

  93. Kim, W.J., Stapleton, S.P., Kim, J.H., Edelman, C.: Digital predistortion linearizes wireless power amplifiers. IEEE Microwave Magazine 6(3), 54–61 (2005)

    Article  Google Scholar 

  94. Komninakis, C., Wesel, R.D.: Joint iterative channel estimation and decoding in flat correlated Rayleigh fading. IEEE J. Select. Areas Commun. 19(9), 1706 – 1717 (2001)

    Article  Google Scholar 

  95. Le Floch, B., Alard, M., Berrou, C.: Coded orthogonal frequency division multiplex. Proc. IEEE 83(6), 982–996 (1995)

    Article  Google Scholar 

  96. Lélé, C., Javaudin, J.P., Legouable, R., Skrzypczak, A., Siohan, P.: Channel estimation methods for preamble-based OFDM/OQAM modulation. European Trans. Telecommun. 19(7), 741–750 (2008)

    Article  Google Scholar 

  97. Li, J., Bala, E., Yang, R.: Resource block filtered-OFDM for future spectrally agile and power efficient systems. Physical Communication 14, 36–55 (2014). http://dx.doi.org/10.1016/j.phycom.2013.10.003

    Article  Google Scholar 

  98. Li, M., Bougart, B., Lopez, E., Bourdoux, A.: Selective spanning with fast enumeration: A near maximum-likelihood MIMO detector designed for parallel programmable baseband architectures. In: Proc. IEEE Int. Conf. Commun., pp. 737 – 741. Beijing, China (2008)

    Google Scholar 

  99. Lin, H., Siohan, P.: Multi-carrier modulation analysis and WCP-COQAM proposal. EURASIP Journal on Advances in Signal Processing 2014(1), 1–19 (2014). https://doi.org/10.1186/1687-6180-2014-79

    Article  Google Scholar 

  100. Liu, J., Zhou, J., Chen, W., Zhou, B., Ghannouchi, F.: Low-complexity 2D behavioural model for concurrent dual-band power amplifiers. Electronics Letters 48(11), 620–621 (2012). https://doi.org/10.1049/el.2012.1183

    Article  Google Scholar 

  101. Liu, T., Boumaiza, S., Ghannouchi, F.: Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Trans. Microwave Theory and Techniques 54(4), 1340–1349 (2006)

    Article  Google Scholar 

  102. Liu, Y., Yan, J., Asbeck, P.: Concurrent dual-band digital predistortion with a single feedback loop. IEEE Transactions on Microwave Theory and Techniques 63, no. 5, 1556–1568 (May 2015)

    Article  Google Scholar 

  103. Loulou, A., Renfors, M.: Enhanced OFDM for fragmented spectrum use in 5G systems. Trans. Emerging Tel. Tech. 26(1), 31–45 (2015). https://doi.org/10.1002/ett.2898

    Article  Google Scholar 

  104. Ma, Y., Yamao, Y.: Spectra-folding feedback architecture for concurrent dual-band power amplifier predistortion. IEEE Transactions on Microwave Theory and Techniques 63(10), 3164–3174 (2015). https://doi.org/10.1109/TMTT.2015.2472011

    Article  Google Scholar 

  105. Mak, P.I., U, S.P., Martins, R.: Transceiver architecture selection: Review, state-of-the-art survey and case study. IEEE Circuits Syst. Mag. 7(2), 6 –25 (2007)

    Article  Google Scholar 

  106. Maliatsos, K., Adamis, A., Kanatas, A.G.: Interference versus filtering distortion trade-offs in OFDM-based cognitive radios. Transactions on Emerging Telecommunications Technologies 24(7-8), 692–708 (2013). https://doi.org/10.1002/ett.2727

    Article  Google Scholar 

  107. Martin, K.: Complex signal processing is not complex. IEEE Trans. Circuits Syst. I 51(9), 1823 – 1836 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  108. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York, USA (1997)

    MATH  Google Scholar 

  109. Meyr, H., Moeneclaey, M., Fechtel, S.A.: Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing. John Wiley and Sons, New York, USA (1998)

    Google Scholar 

  110. Miao, H., Juntti, M.: Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation. IEEE Trans. Veh. Technol. 54(6), 2003–2016 (2005)

    Article  Google Scholar 

  111. Michailow, N., Matthé, M., Gaspar, I.S., Caldevilla, A.N., Mendes, L.L., Festag, A., Fettweis, G.: Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications 62(9), 3045–3061 (2014). https://doi.org/10.1109/TCOMM.2014.2345566

    Article  Google Scholar 

  112. Mirabbasi, S., Martin, K.: Classical and modern receiver architectures. IEEE Commun. Mag. 38(11), 132 – 139 (2000)

    Article  Google Scholar 

  113. Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26 –38 (1995)

    Article  Google Scholar 

  114. Morgan, D., et al.: A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Processing 54(10), 3852–3860 (2006)

    Article  MATH  Google Scholar 

  115. Muhammad, K., Staszewski, R., Leipold, D.: Digital RF processing: Toward low-cost reconfigurable radios. Communications Magazine, IEEE 43(8), 105 – 113 (2005)

    Article  Google Scholar 

  116. Muschallik, C.: Improving an OFDM reception using an adaptive Nyquist windowing. In: 1996. Digest of Technical Papers., International Conference on Consumer Electronics, pp. 6– (1996). https://doi.org/10.1109/ICCE.1996.517186

  117. Myllylä, M.: Detection algorithms and architectures for wireless spatial multiplexing in MIMO–OFDM systems. Ph.D. thesis, Acta Univ. Oul., C Technica 380, University of Oulu (2011)

    Google Scholar 

  118. Myllylä, M., Cavallaro, J.R., Juntti, M.: Architecture design and implementation of the metric first list sphere detector algorithm. IEEE Trans. VLSI Syst. 19(5), 895–899 (2011)

    Article  Google Scholar 

  119. Myllylä, M., Juntti, M., Cavallaro, J.: Architecture design and implementation of the increasing radius - List sphere detector algorithm. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 553–556. Taipei, Taiwan (2009)

    Google Scholar 

  120. Myung, H.G., Junsung, L., Goodman, D.J.: Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1(7), 30–38 (2006)

    Article  Google Scholar 

  121. Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications. Arthec House, Boston (2000)

    Google Scholar 

  122. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA (1989)

    MATH  Google Scholar 

  123. Parsons, J.D.: The Mobile Radio Propagation Channel, second edn. John Wiley & Sons (2001)

    Google Scholar 

  124. Petrovic, D., Rave, W., Fettweis, G.: Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation. IEEE Transactions on Communications 55(8), 1607 –1616 (2007)

    Article  Google Scholar 

  125. PHYDYAS: (2011). INFSO-ICT-211887 Project PHYDYAS Deliverables, [Online]. Available at http://www.ict-phydyas.org

    Google Scholar 

  126. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  127. Pun, M.O., Morelli, M., Kuo, C.C.: Multi-Carrier Techniques for Broadband Wireless Communications. Imperial College Press (2007)

    Google Scholar 

  128. Qian, H., Yao, S., Huang, H., Yang, X., Feng, W.: Low complexity coefficient estimation for concurrent dual-band digital predistortion. IEEE Transactions on Microwave Theory and Techniques 63(10), 3153–3163 (2015). https://doi.org/10.1109/TMTT.2015.2472002

    Article  Google Scholar 

  129. Qualcomm: 5G Waveform & Multiple Access Techniques (2015). Online: www.qualcomm.com/media/documents/files/5g-waveform-multiple-access-techniques.pdf, last accessed 3 June 2016

  130. Rabiei, P., Namgoong, W., Al-Dhahir, N.: A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems. IEEE Trans. Signal Processing 58(11), 5945 –5950 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  131. Renfors, M., Bader, F., Baltar, L., Ruyet, D.L., Roviras, D., Mege, P., Haardt, M., Stitz, T.H.: On the use of filter bank based multicarrier modulation for professional mobile radio. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2013). https://doi.org/10.1109/VTCSpring.2013.6692670

  132. Renfors, M., et al.: Flexible and spectrally localized waveform processing for next generation wireless communications (2015). INFSO-ICT-211887 Project PHYDYAS, White Paper, [Online]. Available at http://www.ict-emphatic.eu/dissemination.html

  133. Renfors, M., Ihalainen, T., Stitz, T.: A block-Alamouti scheme for filter bank based multicarrier transmission. In: European Wireless Conference, pp. 1031 –1037 (2010). https://doi.org/10.1109/EW.2010.5483517

  134. Renfors, M., Saramäki, T.: Recursive Nth-band digital filters- Part II: Design of multistage decimators and interpolators. IEEE Trans. Circuits Syst. 34(1), 40 – 51 (1987)

    Article  Google Scholar 

  135. Renfors, M., Yli-Kaakinen, J.: Flexible fast-convolution implementation of single-carrier waveform processing. In: IEEE Int. Conf on Communications Workshops, ICCW 2015, pp. 1243–1248. London, UK (2015). https://doi.org/10.1109/ICCW.2015.7247352

  136. Renfors, M., Yli-Kaakinen, J., Harris, F.: Analysis and design of efficient and flexible fast-convolution based multirate filter banks. IEEE Trans. Signal Processing 62(15), 3768–3783 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  137. Ringset, V., Rustad, H., Schaich, F., Vandermot, J., Najar, M.: Performance of a filterbank multicarrier (FBMC) physical layer in the WiMAX context. In: Proc. Future Network & Mobile Summit. Florence, Italy (2010)

    Google Scholar 

  138. Roblin, P., Myoung, S.K., Chaillot, D., Kim, Y.G., Fathimulla, A., Strahler, J., Bibyk, S.: Frequency-selective predistortion linearization of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques 56, 65–76 (Jan. 2008)

    Article  Google Scholar 

  139. Roblin, P., Quindroit, C., Naraharisetti, N., Gheitanchi, S., Fitton, M.: Concurrent linearization. IEEE Microwave Magazine pp. 75–91 (Nov. 2013)

    Google Scholar 

  140. Rodriguez, S., Rusu, A., Zheng, L.R., Ismail, M.: CMOS RF mixer with digitally enhanced IIP2. Electronics Letters 44, 121–122 (2008)

    Article  Google Scholar 

  141. Rutten, R., Breems, L., van Veldhoven, R.: Digital jitter-cancellation for narrowband signals. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 1444 –1447 (2008)

    Google Scholar 

  142. Sahin, A., Arslan, H.: Edge windowing for OFDM based systems. IEEE Commun. Lett. 15(11), 1208–1211 (2011)

    Article  Google Scholar 

  143. Saltzberg, B.: Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15(6), 805–811 (1967)

    Article  Google Scholar 

  144. Saramäki, T., Ritoniemi, T.: A modified comb filter structure for decimation. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 2353–2356. Hong-Kong (1997)

    Google Scholar 

  145. Sari, H., Karim, G., Jeanclaude, I.: Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 33(2), 100–109 (1995)

    Article  Google Scholar 

  146. Schaich, F., Wild, T., Chen, Y.: Waveform contenders for 5G – Suitability for short packet and low latency transmissions. In: IEEE Vehicular Technology Conference (VTC Spring 2014), pp. 1–5 (2014)

    Google Scholar 

  147. Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley, Reading, MA, USA (1991)

    MATH  Google Scholar 

  148. Schlegel, C., Pérez, L.: Trellis and Turbo Coding. Wiley IEEE Press Publication, Piscataway, USA (2004)

    Book  Google Scholar 

  149. Shaat, M., Bader, F.: Computationally efficient power allocation algorithm in multicarrier-based cognitive radio networks: OFDM and FBMC systems. EURASIP J. Advances Signal Processing 2010, 1–13 (2010)

    Article  Google Scholar 

  150. Shafi, M., Molisch, A.F., Smith, P.J., Haustein, T., Zhu, P., Silva, P.D., Tufvesson, F., Benjebbour, A., Wunder, G.: 5G: A tutorial overview of standards, trials, challenges, deployment and practice. IEEE Journal on Selected Areas in Communications PP(99), 1–1 (2017). https://doi.org/10.1109/JSAC.2017.2692307

    Article  Google Scholar 

  151. Shahed, A., Valkama, M., Renfors, M.: Adaptive compensation of nonlinear distortion in multicarrier direct-conversion receivers. In: IEEE Radio Wireless Conf., RAWCON’04, pp. 35–38. Atlanta, GA (2004)

    Google Scholar 

  152. Shao, K., Alhava, J., Yli-Kaakinen, J., Renfors, M.: Fast-convolution implementation of filter bank multicarrier waveform processing. In: IEEE Int. Symp. on Circuits and Systems (ISCAS 2015), pp. 978–981. Lisbon, Portugal (2015). https://doi.org/10.1109/ISCAS.2015.7168799

  153. Siohan, P., Siclet, C., Lacaille, N.: Analysis and design of OFDM-OQAM systems based on filterbank theory. IEEE Trans. Signal Processing 50(5), 1170–1183 (2002)

    Article  Google Scholar 

  154. Studer, C., Burg, A., Bolcskei, H.: Soft-output sphere decoding: algorithms and VLSI implementation. IEEE J. Select. Areas Commun. 26(2), 290–300 (2008)

    Article  Google Scholar 

  155. Studer, C., Fateh, S., Seethaler, D.: ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE J. Solid-State Circuits 46(7), 1754–1765 (2011)

    Article  Google Scholar 

  156. Suikkanen, E.: Detection algorithms and ASIC designs for MIMO-OFDM downlink receivers. Ph.D. thesis, Acta Univ. Oul., C Technica 606, University of Oulu, Oulu, Finland (2017)

    Google Scholar 

  157. Suikkanen, E., Juntti, M.: ASIC implementation and performance comparison of adaptive detection for MIMO–OFDM system. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., pp. 1632–1636. Pacific Grove, USA (2015)

    Google Scholar 

  158. Syrjälä, V., Valkama, M.: Analysis and mitigation of phase noise and sampling jitter in OFDM radio receivers. Int. J. Microwave and Wireless Technologies 2(4), 193–202 (2010)

    Article  Google Scholar 

  159. Syrjälä, V., Valkama, M.: Sampling jitter cancellation in direct-sampling radio. In: Proc. IEEE Wireless Commun. and Networking Conf., pp. 1 –6 (2010)

    Google Scholar 

  160. Tandur, D., Moonen, M.: Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems. IEEE Trans. Signal Processing 55(11), 5246 –5252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  161. Tarighat, A., Bagheri, R., Sayed, A.: Compensation schemes and performance analysis of IQ imbalances in OFDM receivers. IEEE Trans. Signal Processing 53(8), 3257 – 3268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  162. Tarver, C., Sun, Y., Amiri, K., Brogioli, M., Cavallaro, J.R.: Application-specific accelerators for communications. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

    Google Scholar 

  163. Tomba, L.: On the effect of Wiener phase noise in OFDM systems. IEEE Trans. Commun. 46(5), 580 –583 (1998)

    Article  Google Scholar 

  164. Toskala, A., Holma, H.: LTE for UMTS - OFDMA and SC-FDMA Based Radio Access. John Wiley and Sons, New York, USA (2009)

    Google Scholar 

  165. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, UK (2005)

    Book  MATH  Google Scholar 

  166. Tsui, J.: Digital Techniques for Wideband Receivers. Artech House, Norwood, MA, USA (1995)

    Google Scholar 

  167. Tüchler, M., Singer, A.C., Koetter, R.: Minimum mean squared error equalisation using a priori information. IEEE Trans. Signal Processing 50(3), 673–683 (2002)

    Article  Google Scholar 

  168. Väänänen, O., Vankka, J., Halonen, K.: Simple algorithm for peak windowing and its application in GSM, EDGE and WCDMA systems. IEE Proc. – Commun. 152(3), 357–362 (2005)

    Article  Google Scholar 

  169. Valkama, M.: RF impairment compensation for future radio systems. In: G. Hueber and R.B. Staszewski, Eds., Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. Wiley/IEEE Press, U.K. (2010)

    Google Scholar 

  170. Valkama, M., Pirskanen, J., Renfors, M.: Signal processing challenges for applying software radio principles in future wireless terminals: An overview. Int. Journal of Communication Systems, Wiley 15, 741–769 (2002)

    MATH  Google Scholar 

  171. Valkama, M., Renfors, M., Koivunen, V.: Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Trans. Signal Processing 49(10), 2335 –2344 (2001)

    Article  Google Scholar 

  172. Valkama, M., Shahed hagh ghadam, A., Anttila, L., Renfors, M.: Advanced digital signal processing techniques for compensation of nonlinear distortion in wideband multicarrier radio receivers. IEEE Trans. Microwave Theory and Techniques 54(6), 2356–2366 (2006)

    Article  Google Scholar 

  173. Valkama, M., Springer, A., Hueber, G.: Digital signal processing for reducing the effects of RF imperfections in radio devices – An overview. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 813 –816 (2010)

    Google Scholar 

  174. Vallet, R., Taieb, K.H.: Fraction spaced multi-carrier modulation. Wireless Pers. Commun., Kluwer 2, 97–103 (1995)

    Google Scholar 

  175. Vangelista, L., Benvenuto, N., Tomasin, S., Nokes, C., Stott, J., Filippi, A., Vlot, M., Mignone, V., Morello, A.: Key technologies for next-generation terrestrial digital television standard DVB-T2. IEEE Commun. Mag. 47(10), 146–153 (2009)

    Article  Google Scholar 

  176. Vaughan, R., Scott, N., White, D.: The theory of bandpass sampling. IEEE Trans. Signal Processing 39(9), 1973 –1984 (1991)

    Article  Google Scholar 

  177. Verdú, S.: Multiuser Detection. Cambridge University Press, Cambridge, UK (1998)

    MATH  Google Scholar 

  178. Viholainen, A., Ihalainen, T., Rinne, M., Renfors, M.: Localized mode DFT-S-OFDMA implementation using frequency and time domain interpolation. EURASIP Journal on Advances in Signal Processing 2009, 1–9 (2009). https://doi.org/10.1155/2009/750534

    Article  Google Scholar 

  179. Viholainen, A., Ihalainen, T., Stitz, T.H., Renfors, M., Bellanger, M.: Prototype filter design for filter bank based multicarrier transmission. In: Proc. European Sign. Proc. Conf. Glasgow, Scotland (2009)

    Google Scholar 

  180. Weinsten, S.B., Ebert, P.M.: Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Trans. Commun. Technol. 19(5), 628–634 (1971)

    Article  Google Scholar 

  181. Weiss, T.A., Hillenbrand, J., Krohn, A., Jondral, F.K.: Mutual interference in OFDM-based spectrum pooling systems. In: Proc. IEEE Veh. Technol. Conf. Spring, pp. 1872–1877. Dallas, TX, USA (2004)

    Google Scholar 

  182. Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In: International Symposium on Signals, Systems, and Electronics (ISSSE), pp. 295–300. Pisa, Italy (1998)

    Google Scholar 

  183. Wong, K., Tsui, C., Cheng, R.K., Mow, W.: A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 273–276. Scottsdale, AZ (2002)

    Google Scholar 

  184. Wu, M., Yin, B., Vosoughi, A., Studer, C., Cavallaro, J.R., Dick, C.: Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 2155–2158. Beijing, China (2013)

    Google Scholar 

  185. Wu, S., Bar-Ness, Y.: OFDM systems in the presence of phase noise: Consequences and solutions. IEEE Trans. Commun. 52(11), 1988 – 1996 (2004)

    Article  Google Scholar 

  186. Xie, Y., Georghiades, C.N., Li, Q.: A novel low complexity detector for MIMO system. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., vol. 1, pp. 208 – 212 (2004)

    Google Scholar 

  187. Yli-Kaakinen, J., Levanen, T., Valkonen, S., Pajukoski, K., Pirskanen, J., Renfors, M., Valkama, M.: Efficient fast-convolution based waveform processing for 5G physical layer. IEEE Journal on Selected Areas in Communications 35, 1–18 (2017)

    Article  Google Scholar 

  188. Ylioinas, J., Juntti, M.: Iterative joint detection, decoding, and channel estimation in turbo coded MIMO-OFDM. IEEE Trans. Veh. Technol. 58(4), 1784–1796 (2009). https://doi.org/10.1109/TVT.2008.2005724

    Article  Google Scholar 

  189. Ylioinas, J., Raghavendra, M.R., Juntti, M.: Avoiding matrix inversion in DD SAGE channel estimation in MIMO-OFDM with M-QAM. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5. Anchorage, USA (2009)

    Google Scholar 

  190. Younes, M., Kwan, A., Rawat, M., Ghannouchi, F.M.: Linearization of concurrent tri-band transmitters using 3-D phase-aligned pruned volterra model. IEEE Transactions on Microwave Theory and Techniques 61(12), 4569–4578 (2013). https://doi.org/10.1109/TMTT.2013.2287176

    Article  Google Scholar 

  191. Yu, C., Allegue-Martinez, M., Guo, Y., Zhu, A.: Output-controllable partial inverse digital predistortion for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques 62(11), 2499–2510 (2014). https://doi.org/10.1109/TMTT.2014.2360175

    Article  Google Scholar 

  192. Yu, C., Guan, L., Zhu, E., Zhu, A.: Band-limited volterra series-based digital predistortion for wideband RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques 60(12), 4198–4208 (2012). https://doi.org/10.1109/TMTT.2012.2222658

    Article  Google Scholar 

  193. Yu, C., Xia, J., Zhu, X., Zhu, A.: Single-model single-feedback digital predistortion for concurrent multi-band wireless transmitters. IEEE Transactions on Microwave Theory and Techniques 63(7), 2211–2224 (2015). https://doi.org/10.1109/TMTT.2015.2429633

    Article  Google Scholar 

  194. Yuan, Z., Wyglinski, A.: On sidelobe suppression for multicarrier-based transmission in dynamic spectrum access networks. IEEE Trans. Veh. Technol. 59(4), 1998 – 2006 (2010)

    Article  Google Scholar 

  195. Zayani, R., Medjahdi, Y., Shaiek, H., Roviras, D.: WOLA-OFDM: A potential candidate for asynchronous 5G. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–5 (2016). https://doi.org/10.1109/GLOCOMW.2016.7849087

  196. Zhang, H., LeRuyet, D., Roviras, D., Medjahdi, Y., Sun, H.: Spectral efficiency comparison of OFDM/FBMC for uplink cognitive radio networks. EURASIP J. Advances Signal Processing 2010, 1–14 (2010)

    Google Scholar 

  197. Zhou, D., DeBrunner, V.E.: Novel adaptive nonlinear predistorters based on the direct learning algorithm. IEEE Trans. Signal Processing 55(1), 120–133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  198. Zhou, G.T., et al.: On the baseband representation of a bandpass nonlinearity. IEEE Trans. Signal Processing 53(8), 2953–2957 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  199. Zhu, Y., Letaief, K.: Single carrier frequency domain equalization with time domain noise prediction for wideband wireless communications. IEEE Trans. Wireless Commun. 5(12), 3548–3557 (2006)

    Article  Google Scholar 

  200. Zou, Q., Tarighat, A., Sayed, A.: Compensation of phase noise in OFDM wireless systems. IEEE Trans. Signal Processing 55(11), 5407 –5424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  201. Zou, Y., Valkama, M., Renfors, M.: Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems. IEEE Trans. Signal Processing 56(6), 2496 –2508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Renfors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renfors, M., Juntti, M., Valkama, M. (2019). Signal Processing for Wireless Transceivers. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91734-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91734-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91733-7

  • Online ISBN: 978-3-319-91734-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics