Skip to main content

Familial Non-Medullary Thyroid Cancer

  • Chapter
  • First Online:
Practical Management of Thyroid Cancer

Abstract

Approximately 3–9% of all nonmedullary thyroid cancers are familial. Familial nonmedullary thyroid cancer (FNMTC) may occur as part of a familial cancer syndrome (syndromic) or as the predominant or only feature being nonmedullary thyroid cancer (nonsyndromic). Most cases of FNMTC are nonsyndromic, accounting for approximately 95% of all FNMTC cases. In syndromic FNMTC, although the risk of nonmedullary thyroid cancer is higher than in the general population, it is commonly a minor component or an infrequent manifestation of the syndrome, which includes familial adenomatous polyposis, PTEN hamartoma tumor syndrome, Carney’s complex type 1, Werner, Pendred and DICER1 syndromes, and ataxia-telangiectasia. In this article, we review our current understanding of the genetics of syndromic and nonsyndromic FNMTC, the strategies and results of screening and surveillance, the known clinicopathologic features of syndromic and nonsyndromic FNMTC, and the treatment options in patients with FNMTC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vriens MR, Suh I, Moses W, Kebebew E. Clinical features and genetic predisposition to hereditary nonmedullary thyroid cancer. Thyroid. 2009;19(12):1343–9.

    Article  CAS  PubMed  Google Scholar 

  2. Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer. 2016;23(12):R577–R95.

    Article  PubMed  Google Scholar 

  3. Marsh DJ, Coulon V, Lunetta KL, Rocca-Serra P, Dahia PL, Zheng Z, et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet. 1998;7(3):507–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett KL, Mester J, Eng C. Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. JAMA. 2010;304(24):2724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orloff MS, He X, Peterson C, Chen F, Chen JL, Mester JL, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet. 2013;92(1):76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yehia L, Niazi F, Ni Y, Ngeow J, Sankunny M, Liu Z, et al. Germline heterozygous variants in SEC23B are associated with Cowden syndrome and enriched in apparently sporadic thyroid cancer. Am J Hum Genet. 2015;97(5):661–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lloyd KM, Dennis M. Cowden’s disease. A possible new symptom complex with multiple system involvement. Ann Intern Med. 1963;58:136–42.

    Article  PubMed  Google Scholar 

  9. Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.

    Article  CAS  PubMed  Google Scholar 

  10. Ngeow J, Eng C. PTEN hamartoma tumor syndrome: clinical risk assessment and management protocol. Methods. 2015;77–78:11–9.

    Article  PubMed  CAS  Google Scholar 

  11. Thyroid Cancer. A comprehensive guide to clinical management. Third edition. Anticancer Res. 2017;37(1):361.

    Google Scholar 

  12. Pilarski R. Cowden syndrome: a critical review of the clinical literature. J Genet Couns. 2009;18(1):13–27.

    Article  PubMed  Google Scholar 

  13. Starink TM, van der Veen JP, Arwert F, de Waal LP, de Lange GG, Gille JJ, et al. The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet. 1986;29(3):222–33.

    Article  CAS  PubMed  Google Scholar 

  14. Eng C. Cowden syndrome. J Genet Couns. 1997;6(2):181–92.

    Article  CAS  PubMed  Google Scholar 

  15. Marsh DJ, Dahia PL, Caron S, Kum JB, Frayling IM, Tomlinson IP, et al. Germline PTEN mutations in Cowden syndrome-like families. J Med Genet. 1998;35(11):881–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanssen AM, Fryns JP. Cowden syndrome. J Med Genet. 1995;32(2):117–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milas M, Mester J, Metzger R, Shin J, Mitchell J, Berber E, et al. Should patients with Cowden syndrome undergo prophylactic thyroidectomy? Surgery. 2012;152(6):1201–10.

    Article  PubMed  Google Scholar 

  18. Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62. quiz 63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smith JR, Marqusee E, Webb S, Nose V, Fishman SJ, Shamberger RC, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab. 2011;96(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  20. Marsh DJ, Kum JB, Lunetta KL, Bennett MJ, Gorlin RJ, Ahmed SF, et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8(8):1461–72.

    Article  CAS  PubMed  Google Scholar 

  21. Peiretti V, Mussa A, Feyles F, Tuli G, Santanera A, Molinatto C, et al. Thyroid involvement in two patients with Bannayan-Riley-Ruvalcaba syndrome. J Clin Res Pediatr Endocrinol. 2013;5(4):261–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bannayan GA. Lipomatosis, angiomatosis, and macrencephalia. A previously undescribed congenital syndrome. Arch Pathol. 1971;92(1):1–5.

    CAS  PubMed  Google Scholar 

  23. Laury AR, Bongiovanni M, Tille JC, Kozakewich H, Nose V. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid. 2011;21(2):135–44.

    Article  PubMed  Google Scholar 

  24. Richards ML. Familial syndromes associated with thyroid cancer in the era of personalized medicine. Thyroid. 2010;20(7):707–13.

    Article  PubMed  Google Scholar 

  25. Eng C. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. PTEN hamartoma tumor syndrome. Seattle: GeneReviews(R); 1993.

    Google Scholar 

  26. Haugen BRM, Alexander EK, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2015;26(1):1–133.

    Article  Google Scholar 

  27. Zirilli L, Benatti P, Romano S, Roncucci L, Rossi G, Diazzi C, et al. Differentiated thyroid carcinoma (DTC) in a young woman with Peutz-Jeghers syndrome: are these two conditions associated? Exp Clin Endocrinol Diabetes. 2009;117(5):234–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Wu B, Mosig RA, Chen Y, Ye F, Zhang Y, et al. STK11 domain XI mutations: candidate genetic drivers leading to the development of dysplastic polyps in Peutz-Jeghers syndrome. Hum Mutat. 2014;35(7):851–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lim W, Olschwang S, Keller JJ, Westerman AM, Menko FH, Boardman LA, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126(7):1788–94.

    Article  CAS  PubMed  Google Scholar 

  30. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. STK11 status and intussusception risk in Peutz-Jeghers syndrome. J Med Genet. 2006;43(8):e41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amos CI, Keitheri-Cheteri MB, Sabripour M, Wei C, McGarrity TJ, Seldin MF, et al. Genotype-phenotype correlations in Peutz-Jeghers syndrome. J Med Genet. 2004;41(5):327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salloch H, Reinacher-Schick A, Schulmann K, Pox C, Willert J, Tannapfel A, et al. Truncating mutations in Peutz-Jeghers syndrome are associated with more polyps, surgical interventions and cancers. Int J Color Dis. 2010;25(1):97–107.

    Article  Google Scholar 

  33. Triggiani V, Guastamacchia E, Renzulli G, Giagulli VA, Tafaro E, Licchelli B, et al. Papillary thyroid carcinoma in Peutz-Jeghers syndrome. Thyroid. 2011;21(11):1273–7.

    Article  PubMed  Google Scholar 

  34. Yamamoto M, Hoshino H, Onizuka T, Ichikawa M, Kawakubo A, Hayakawa S. Thyroid papillary adenocarcinoma in a woman with Peutz-Jeghers syndrome. Intern Med. 1992;31(9):1117–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yalcin S, Kirli E, Ciftci AO, Karnak I, Resta N, Bagnulo R, et al. The association of adrenocortical carcinoma and thyroid cancer in a child with Peutz-Jeghers syndrome. J Pediatr Surg. 2011;46(3):570–3.

    Article  PubMed  Google Scholar 

  36. Spigelman AD, Murday V, Phillips RK. Cancer and the Peutz-Jeghers syndrome. Gut. 1989;30(11):1588–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reed MW, Harris SC, Quayle AR, Talbot CH. The association between thyroid neoplasia and intestinal polyps. Ann R Coll Surg Engl. 1990;72(6):357–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998;128(11):896–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wei S, LiVolsi VA, Brose MS, Montone KT, Morrissette JJ, Baloch ZW. STK11 mutation identified in thyroid carcinoma. Endocr Pathol. 2016;27(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  40. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cottrell S, Bicknell D, Kaklamanis L, Bodmer WF. Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet. 1992;340(8820):626–30.

    Article  CAS  PubMed  Google Scholar 

  42. Nagase H, Nakamura Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat. 1993;2(6):425–34.

    Article  CAS  PubMed  Google Scholar 

  43. Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1996;24(1):121–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5(3):367–77.

    Article  CAS  PubMed  Google Scholar 

  45. Giannelli SM, McPhaul L, Nakamoto J, Gianoukakis AG. Familial adenomatous polyposis-associated, cribriform morular variant of papillary thyroid carcinoma harboring a K-RAS mutation: case presentation and review of molecular mechanisms. Thyroid. 2014;24(7):1184–9.

    Article  CAS  PubMed  Google Scholar 

  46. Claes K, Dahan K, Tejpar S, De Paepe A, Bonduelle M, Abramowicz M, et al. The genetics of familial adenomatous polyposis (FAP) and MutYH-associated polyposis (MAP). Acta Gastroenterol Belg. 2011;74(3):421–6.

    PubMed  Google Scholar 

  47. Jasperson KW, Burt RW. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. APC-associated polyposis conditions. Seattle: GeneReviews(R); 1993.

    Google Scholar 

  48. Septer S, Slowik V, Morgan R, Dai H, Attard T. Thyroid cancer complicating familial adenomatous polyposis: mutation spectrum of at-risk individuals. Hered Cancer Clin Pract. 2013;11(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jarrar AM, Milas M, Mitchell J, Laguardia L, O'Malley M, Berber E, et al. Screening for thyroid cancer in patients with familial adenomatous polyposis. Ann Surg. 2011;253(3):515–21.

    Article  PubMed  Google Scholar 

  50. Crail HW. Multiple primary malignancies arising in the rectum, brain, and thyroid; report of a case. U S Nav Med Bull. 1949;49(1):123–8.

    CAS  PubMed  Google Scholar 

  51. Nose V. Familial thyroid cancer: a review. Mod Pathol. 2011;24(Suppl 2):S19–33.

    Article  CAS  PubMed  Google Scholar 

  52. Punatar SB, Noronha V, Joshi A, Prabhash K. Thyroid cancer in Gardner’s syndrome: case report and review of literature. South Asian J Cancer. 2012;1(1):43–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Herraiz M, Barbesino G, Faquin W, Chan-Smutko G, Patel D, Shannon KM, et al. Prevalence of thyroid cancer in familial adenomatous polyposis syndrome and the role of screening ultrasound examinations. Clin Gastroenterol Hepatol. 2007;5(3):367–73.

    Article  PubMed  Google Scholar 

  54. Plail RO, Bussey HJ, Glazer G, Thomson JP. Adenomatous polyposis: an association with carcinoma of the thyroid. Br J Surg. 1987;74(5):377–80.

    Article  CAS  PubMed  Google Scholar 

  55. Bulow S, Holm NV, Mellemgaard A. Papillary thyroid carcinoma in Danish patients with familial adenomatous polyposis. Int J Color Dis. 1988;3(1):29–31.

    Article  CAS  Google Scholar 

  56. Truta B, Allen BA, Conrad PG, Kim YS, Berk T, Gallinger S, et al. Genotype and phenotype of patients with both familial adenomatous polyposis and thyroid carcinoma. Familial Cancer. 2003;2(2):95–9.

    Article  CAS  PubMed  Google Scholar 

  57. Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127(2):444–51.

    Article  PubMed  Google Scholar 

  58. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044–58.

    Article  CAS  PubMed  Google Scholar 

  59. Adams MS, Bronner-Fraser M. Review: the role of neural crest cells in the endocrine system. Endocr Pathol. 2009;20(2):92–100.

    Article  CAS  PubMed  Google Scholar 

  60. Cetta F, Curia MC, Montalto G, Gori M, Cama A, Battista P, et al. Thyroid carcinoma usually occurs in patients with familial adenomatous polyposis in the absence of biallelic inactivation of the adenomatous polyposis coli gene. J Clin Endocrinol Metab. 2001;86(1):427–32.

    CAS  PubMed  Google Scholar 

  61. Cetta F, Olschwang S, Petracci M, Montalto G, Baldi C, Zuckermann M, et al. Genetic alterations in thyroid carcinoma associated with familial adenomatous polyposis: clinical implications and suggestions for early detection. World J Surg. 1998;22(12):1231–6.

    Article  CAS  PubMed  Google Scholar 

  62. Iwama T, Mishima Y, Utsunomiya J. The impact of familial adenomatous polyposis on the tumorigenesis and mortality at the several organs. Its rational treatment. Ann Surg. 1993;217(2):101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Soravia C, Sugg SL, Berk T, Mitri A, Cheng H, Gallinger S, et al. Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological, and molecular genetics study. Am J Pathol. 1999;154(1):127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perrier ND, van Heerden JA, Goellner JR, Williams ED, Gharib H, Marchesa P, et al. Thyroid cancer in patients with familial adenomatous polyposis. World J Surg. 1998;22(7):738–42. discussion 43.

    Article  CAS  PubMed  Google Scholar 

  65. Harach HR, Williams GT, Williams ED. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology. 1994;25(6):549–61.

    Article  CAS  PubMed  Google Scholar 

  66. Cameselle-Teijeiro J, Chan JK. Cribriform-morular variant of papillary carcinoma: a distinctive variant representing the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma? Mod Pathol. 1999;12(4):400–11.

    CAS  PubMed  Google Scholar 

  67. Hampel H, Panescu J, Lockman J, Sotamaa K, Fix D, Comeras I, et al. Comment on: screening for Lynch Syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2007;67(19):9603.

    Article  CAS  PubMed  Google Scholar 

  68. Taylor MD, Perry J, Zlatescu MC, Stemmer-Rachamimov AO, Ang LC, Ino Y, et al. The hPMS2 exon 5 mutation and malignant glioma. Case report. J Neurosurg. 1999;90(5):946–50.

    Article  CAS  PubMed  Google Scholar 

  69. Gadish T, Tulchinsky H, Deutsch AA, Rabau M. Pinealoblastoma in a patient with familial adenomatous polyposis: variant of Turcot syndrome type 2? Report of a case and review of the literature. Dis Colon Rectum. 2005;48(12):2343–6.

    Article  CAS  PubMed  Google Scholar 

  70. Cetta F, Montalto G, Gori M, Curia MC, Cama A, Olschwang S. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study. J Clin Endocrinol Metab. 2000;85(1):286–92.

    CAS  PubMed  Google Scholar 

  71. Stratakis CA, Courcoutsakis NA, Abati A, Filie A, Doppman JL, Carney JA, et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab. 1997;82(7):2037–43.

    Article  CAS  PubMed  Google Scholar 

  72. Matyakhina L, Pack S, Kirschner LS, Pak E, Mannan P, Jaikumar J, et al. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet. 2003;40(4):268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pan L, Peng L, Jean-Gilles J, Zhang X, Wieczorek R, Jain S, et al. Novel PRKAR1A gene mutations in Carney complex. Int J Clin Exp Pathol. 2010;3(5):545–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kirschner LS, Sandrini F, Monbo J, Lin JP, Carney JA, Stratakis CA. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the carney complex. Hum Mol Genet. 2000;9(20):3037–46.

    Article  CAS  PubMed  Google Scholar 

  75. Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009;94(6):2085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Almeida MQ, Stratakis CA. Carney complex and other conditions associated with micronodular adrenal hyperplasias. Best Pract Res Clin Endocrinol Metab. 2010;24(6):907–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest. 1996;97(3):699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Casey M, Mah C, Merliss AD, Kirschner LS, Taymans SE, Denio AE, et al. Identification of a novel genetic locus for familial cardiac myxomas and Carney complex. Circulation. 1998;98(23):2560–6.

    Article  CAS  PubMed  Google Scholar 

  79. Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore). 1985;64(4):270–83.

    Article  CAS  Google Scholar 

  80. Son EJ, Nose V. Familial follicular cell-derived thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:61.

    Article  Google Scholar 

  81. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6.

    Article  CAS  PubMed  Google Scholar 

  82. Correa R, Salpea P, Stratakis CA. Carney complex: an update. Eur J Endocrinol. 2015;173(4):M85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rothenbuhler A, Stratakis CA. Clinical and molecular genetics of Carney complex. Best Pract Res Clin Endocrinol Metab. 2010;24(3):389–99.

    Article  CAS  PubMed  Google Scholar 

  84. Sandrini F, Stratakis C. Clinical and molecular genetics of Carney complex. Mol Genet Metab. 2003;78(2):83–92.

    Article  CAS  PubMed  Google Scholar 

  85. Bossis I, Voutetakis A, Bei T, Sandrini F, Griffin KJ, Stratakis CA. Protein kinase A and its role in human neoplasia: the Carney complex paradigm. Endocr Relat Cancer. 2004;11(2):265–80.

    Article  CAS  PubMed  Google Scholar 

  86. Stratakis CA, Kirschner LS, Carney JA. Carney complex: diagnosis and management of the complex of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas. Am J Med Genet. 1998;80(2):183–5.

    Article  CAS  PubMed  Google Scholar 

  87. Taylor JP, Metcalfe RA, Watson PF, Weetman AP, Trembath RC. Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metab. 2002;87(4):1778–84.

    Article  CAS  PubMed  Google Scholar 

  88. Pera A, Villamar M, Vinuela A, Gandia M, Meda C, Moreno F, et al. A mutational analysis of the SLC26A4 gene in Spanish hearing-impaired families provides new insights into the genetic causes of Pendred syndrome and DFNB4 hearing loss. Eur J Hum Genet. 2008;16(8):888–96.

    Article  CAS  PubMed  Google Scholar 

  89. Yang T, Gurrola JG, Wu H, Chiu SM, Wangemann P, Snyder PM, et al. Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am J Hum Genet. 2009;84(5):651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nose V. Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv Anat Pathol. 2010;17(6):428–36.

    Article  CAS  PubMed  Google Scholar 

  91. Sakurai K, Hata M, Hishinuma A, Ushijima R, Okada A, Taeda Y, et al. Papillary thyroid carcinoma in one of identical twin patients with Pendred syndrome. Endocr J. 2013;60(6):805–11.

    Article  CAS  PubMed  Google Scholar 

  92. Tong GX, Chang Q, Hamele-Bena D, Carew J, Hoffman RS, Nikiforova MN, et al. Targeted next-generation sequencing analysis of a pendred syndrome-associated thyroid carcinoma. Endocr Pathol. 2016;27(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  93. Snabboon T, Plengpanich W, Saengpanich S, Sirisalipoch S, Keelawat S, Sunthornyothin S, et al. Two common and three novel PDS mutations in Thai patients with Pendred syndrome. J Endocrinol Investig. 2007;30(11):907–13.

    Article  CAS  Google Scholar 

  94. Camargo R, Limbert E, Gillam M, Henriques MM, Fernandes C, Catarino AL, et al. Aggressive metastatic follicular thyroid carcinoma with anaplastic transformation arising from a long-standing goiter in a patient with Pendred’s syndrome. Thyroid. 2001;11(10):981–8.

    Article  CAS  PubMed  Google Scholar 

  95. Rutter MM, Jha P, Schultz KA, Sheil A, Harris AK, Bauer AJ, et al. DICER1 mutations and differentiated thyroid carcinoma: evidence of a direct association. J Clin Endocrinol Metab. 2016;101(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  96. Rio Frio T, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA. 2011;305(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  97. de Kock L, Sabbaghian N, Soglio DB, Guillerman RP, Park BK, Chami R, et al. Exploring the association between DICER1 mutations and differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2014;99(6):E1072–7.

    Article  PubMed  CAS  Google Scholar 

  98. Rome A, Gentet JC, Coze C, Andre N. Pediatric thyroid cancer arising as a fourth cancer in a child with pleuropulmonary blastoma. Pediatr Blood Cancer. 2008;50(5):1081.

    Article  PubMed  Google Scholar 

  99. Doros L, Schultz KA, Stewart DR, Bauer AJ, Williams G, Rossi CT, et al. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. DICER1-related disorders. Seattle: GeneReviews(R); 1993.

    Google Scholar 

  100. McConville CM, Stankovic T, Byrd PJ, McGuire GM, Yao QY, Lennox GG, et al. Mutations associated with variant phenotypes in ataxia-telangiectasia. Am J Hum Genet. 1996;59(2):320–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Concannon P, Gatti RA. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat. 1997;10(2):100–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9(10):759–69.

    Article  CAS  PubMed  Google Scholar 

  103. Brasseur B, Beauloye V, Chantrain C, Daumerie C, Vermylen C, Waignein F, et al. Papillary thyroid carcinoma in a 9-year-old girl with ataxia-telangiectasia. Pediatr Blood Cancer. 2008;50(5):1058–60.

    Article  PubMed  Google Scholar 

  104. Malchoff CD, Sarfarazi M, Tendler B, Forouhar F, Whalen G, Joshi V, et al. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab. 2000;85(5):1758–64.

    CAS  PubMed  Google Scholar 

  105. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, et al. Positional cloning of the Werner’s syndrome gene. Science. 1996;272(5259):258–62.

    Article  CAS  PubMed  Google Scholar 

  106. Nehlin JO, Skovgaard GL, Bohr VA. The Werner syndrome. A model for the study of human aging. Ann N Y Acad Sci. 2000;908:167–79.

    Article  CAS  PubMed  Google Scholar 

  107. Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leistritz DF, Bohr VA. The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet. 2008;124(4):369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ishikawa Y, Sugano H, Matsumoto T, Furuichi Y, Miller RW, Goto M. Unusual features of thyroid carcinomas in Japanese patients with Werner syndrome and possible genotype-phenotype relations to cell type and race. Cancer. 1999;85(6):1345–52.

    Article  CAS  PubMed  Google Scholar 

  109. Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Oshima J, Martin GM, Hisama FM. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. Werner syndrome. Seattle: GeneReviews(R); 1993.

    Google Scholar 

  111. Bano G, Hodgson S. Diagnosis and management of hereditary thyroid cancer. Recent Results Cancer Res. 2016;205:29–44.

    Article  PubMed  Google Scholar 

  112. Sturgeon C, Clark OH. Familial nonmedullary thyroid cancer. Thyroid. 2005;15(6):588–93.

    Article  PubMed  Google Scholar 

  113. Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science. 2000;290(5489):138–41.

    Article  CAS  PubMed  Google Scholar 

  114. Alsanea O, Wada N, Ain K, Wong M, Taylor K, Ituarte PH, et al. Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A multicenter series. Surgery. 2000;128(6):1043–50. discussion 50–1.

    Article  CAS  PubMed  Google Scholar 

  115. Uchino S, Noguchi S, Kawamoto H, Yamashita H, Watanabe S, Yamashita H, et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg. 2002;26(8):897–902.

    Article  PubMed  Google Scholar 

  116. Pal T, Vogl FD, Chappuis PO, Tsang R, Brierley J, Renard H, et al. Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of nonmedullary thyroid cancer: a hospital-based study. J Clin Endocrinol Metab. 2001;86(11):5307–12.

    Article  CAS  PubMed  Google Scholar 

  117. Musholt TJ, Musholt PB, Petrich T, Oetting G, Knapp WH, Klempnauer J. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg. 2000;24(11):1409–17.

    Article  CAS  PubMed  Google Scholar 

  118. Joanna Klubo-Gwiezdzinska LY, Merkel R, Patel D, Nilubol N, Skarulis MC. Samira Mercedes Sadowski and Electron Kebebew screening in Familial Non-Medullary Thyroid Cancer (FNMTC) results in detection of low risk papillary thyroid cancer – a Prospective Cohort Study. 2016.

    Google Scholar 

  119. Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet. 2009;41(4):460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Perez L, Schiavi F, Leskela S, et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet. 2009;5(9):e1000637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Tomaz RA, Sousa I, Silva JG, Santos C, Teixeira MR, Leite V, et al. FOXE1 polymorphisms are associated with familial and sporadic nonmedullary thyroid cancer susceptibility. Clin Endocrinol. 2012;77(6):926–33.

    Article  CAS  Google Scholar 

  122. Pereira JS, da Silva JG, Tomaz RA, Pinto AE, Bugalho MJ, Leite V, et al. Identification of a novel germline FOXE1 variant in patients with familial non-medullary thyroid carcinoma (FNMTC). Endocrine. 2015;49(1):204–14.

    Article  CAS  PubMed  Google Scholar 

  123. Gara SK, Jia L, Merino MJ, Agarwal SK, Zhang L, Cam M, et al. Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N Engl J Med. 2015;373(5):448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang T, Xing M. HABP2 G534E mutation in familial nonmedullary thyroid cancer. J Natl Cancer Inst. 2016;108(6):djv415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Sahasrabudhe R, Stultz J, Williamson J, Lott P, Estrada A, Bohorquez M, et al. The HABP2 G534E variant is an unlikely cause of familial non-medullary thyroid cancer. J Clin Endocrinol Metab. 2015;21:jc20153928.

    Google Scholar 

  126. Cantara S, Marzocchi C, Castagna MG, Pacini F. HABP2 G534E variation in familial non-medullary thyroid cancer: an Italian series. J Endocrinol Investig. 2016;21:557–60.

    Google Scholar 

  127. Weeks AL, Wilson SG, Ward L, Goldblatt J, Hui J, Walsh JP. HABP2 germline variants are uncommon in familial nonmedullary thyroid cancer. BMC Med Genet. 2016;17(1):60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ruiz-Ferrer M, Fernandez RM, Navarro E, Antinolo G, Borrego S. G534E variant in HABP2 and nonmedullary thyroid cancer. Thyroid. 2016;26(7):987–8.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bohorquez ME, Estrada AP, Stultz J, Sahasrabudhe R, Williamson J, Lott P, et al. The HABP2 G534E polymorphism does not increase nonmedullary thyroid cancer risk in Hispanics. Endocr Connect. 2016;5(3):123–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alzahrani AS, Murugan AK, Qasem E, Al-Hindi H. HABP2 gene mutations do not cause familial or sporadic non-medullary thyroid cancer in a highly inbred middle eastern population. Thyroid. 2016;26(5):667–71.

    Article  CAS  PubMed  Google Scholar 

  131. Tomsic J, Fultz R, Liyanarachchi S, He H, Senter L, de la Chapelle A. HABP2 G534E variant in papillary thyroid carcinoma. PLoS One. 2016;11(1):e0146315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Canzian F, Amati P, Harach HR, Kraimps JL, Lesueur F, Barbier J, et al. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet. 1998;63(6):1743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bevan S, Pal T, Greenberg CR, Green H, Wixey J, Bignell G, et al. A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial nonmedullary thyroid cancer: confirmation of linkage to TCO1. J Clin Endocrinol Metab. 2001;86(8):3701–4.

    Article  CAS  PubMed  Google Scholar 

  134. Stankov K, Pastore A, Toschi L, McKay J, Lesueur F, Kraimps JL, et al. Allelic loss on chromosomes 2q21 and 19p 13.2 in oxyphilic thyroid tumors. Int J Cancer. 2004;111(3):463–7.

    Article  CAS  PubMed  Google Scholar 

  135. Prazeres HJ, Rodrigues F, Soares P, Naidenov P, Figueiredo P, Campos B, et al. Loss of heterozygosity at 19p13.2 and 2q21 in tumours from familial clusters of non-medullary thyroid carcinoma. Familial Cancer. 2008;7(2):141–9.

    Article  PubMed  Google Scholar 

  136. Capezzone M, Cantara S, Marchisotta S, Filetti S, De Santi MM, Rossi B, et al. Short telomeres, telomerase reverse transcriptase gene amplification, and increased telomerase activity in the blood of familial papillary thyroid cancer patients. J Clin Endocrinol Metab. 2008;93(10):3950–7.

    Article  CAS  PubMed  Google Scholar 

  137. He M, Bian B, Gesuwan K, Gulati N, Zhang L, Nilubol N, et al. Telomere length is shorter in affected members of families with familial nonmedullary thyroid cancer. Thyroid. 2013;23(3):301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jendrzejewski J, Tomsic J, Lozanski G, Labanowska J, He H, Liyanarachchi S, et al. Telomere length and telomerase reverse transcriptase gene copy number in patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96(11):E1876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. He H, Li W, Wu D, Nagy R, Liyanarachchi S, Akagi K, et al. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance. PLoS One. 2013;8(5):e61920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bignell GR, Canzian F, Shayeghi M, Stark M, Shugart YY, Biggs P, et al. Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet. 1997;61(5):1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McKay JD, Williamson J, Lesueur F, Stark M, Duffield A, Canzian F, et al. At least three genes account for familial papillary thyroid carcinoma: TCO and MNG1 excluded as susceptibility loci from a large Tasmanian family. Eur J Endocrinol. 1999;141(2):122–5.

    Article  CAS  PubMed  Google Scholar 

  142. Lesueur F, Stark M, Tocco T, Ayadi H, Delisle MJ, Goldgar DE, et al. Genetic heterogeneity in familial nonmedullary thyroid carcinoma: exclusion of linkage to RET, MNG1, and TCO in 56 families. NMTC consortium. J Clin Endocrinol Metab. 1999;84(6):2157–62.

    CAS  PubMed  Google Scholar 

  143. Tsilchorozidou T, Vafiadou E, Yovos JG, Romeo G, McKay J, Lesueur F, et al. A Greek family with a follicular variant of familial papillary thyroid carcinoma: TCO, MNG1, fPTC/PRN, and NMTC1 excluded as susceptibility loci. Thyroid. 2005;15(12):1349–54.

    Article  CAS  PubMed  Google Scholar 

  144. Suh I, Filetti S, Vriens MR, Guerrero MA, Tumino S, Wong M, et al. Distinct loci on chromosome 1q21 and 6q22 predispose to familial nonmedullary thyroid cancer: a SNP array-based linkage analysis of 38 families. Surgery. 2009;146(6):1073–80.

    Article  PubMed  Google Scholar 

  145. Cavaco BM, Batista PF, Martins C, Banito A, do Rosario F, Limbert E, et al. Familial non-medullary thyroid carcinoma (FNMTC): analysis of fPTC/PRN, NMTC1, MNG1 and TCO susceptibility loci and identification of somatic BRAF and RAS mutations. Endocr Relat Cancer. 2008;15(1):207–15.

    Article  PubMed  Google Scholar 

  146. McKay JD, Lesueur F, Jonard L, Pastore A, Williamson J, Hoffman L, et al. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet. 2001;69(2):440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McKay JD, Thompson D, Lesueur F, Stankov K, Pastore A, Watfah C, et al. Evidence for interaction between the TCO and NMTC1 loci in familial non-medullary thyroid cancer. J Med Genet. 2004;41(6):407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. He H, Bronisz A, Liyanarachchi S, Nagy R, Li W, Huang Y, et al. SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J Clin Endocrinol Metab. 2013;98(5):E973–80.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell. 2001;107(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  150. Ngan ES, Lang BH, Liu T, Shum CK, So MT, Lau DK, et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J Natl Cancer Inst. 2009;101(3):162–75.

    Article  CAS  PubMed  Google Scholar 

  151. Cantara S, Capuano S, Formichi C, Pisu M, Capezzone M, Pacini F. Lack of germline A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1) gene in familial papillary thyroid cancer. Thyroid Res. 2010;3(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid. 2011;21(4):367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Park YJ, Ahn HY, Choi HS, Kim KW, Park DJ, Cho BY. The long-term outcomes of the second generation of familial nonmedullary thyroid carcinoma are more aggressive than sporadic cases. Thyroid. 2012;22(4):356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid. 2006;16(2):181–6.

    Article  PubMed  Google Scholar 

  155. Malchoff CD, Malchoff DM. Familial nonmedullary thyroid carcinoma. Cancer Control. 2006;13(2):106–10.

    Article  PubMed  Google Scholar 

  156. Capezzone M, Marchisotta S, Cantara S, Busonero G, Brilli L, Pazaitou-Panayiotou K, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer. 2008;15(4):1075–81.

    Article  CAS  PubMed  Google Scholar 

  157. Robenshtok E, Tzvetov G, Grozinsky-Glasberg S, Shraga-Slutzky I, Weinstein R, Lazar L, et al. Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid. 2011;21(1):43–8.

    Article  PubMed  Google Scholar 

  158. Maxwell EL, Hall FT, Freeman JL. Familial non-medullary thyroid cancer: a matched-case control study. Laryngoscope. 2004;114(12):2182–6.

    Article  PubMed  Google Scholar 

  159. Ito Y, Kakudo K, Hirokawa M, Fukushima M, Yabuta T, Tomoda C, et al. Biological behavior and prognosis of familial papillary thyroid carcinoma. Surgery. 2009;145(1):100–5.

    Article  PubMed  Google Scholar 

  160. Navas-Carrillo D, Rios A, Rodriguez JM, Parrilla P, Orenes-Pinero E. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings. Biochim Biophys Acta. 2014;1846(2):468–76.

    CAS  PubMed  Google Scholar 

  161. Sadowski SM, He M, Gesuwan K, Gulati N, Celi F, Merino MJ, et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery. 2013;154(6):1194–8.

    Article  PubMed  Google Scholar 

  162. McDonald TJ, Driedger AA, Garcia BM, Van Uum SH, Rachinsky I, Chevendra V, et al. Familial papillary thyroid carcinoma: a retrospective analysis. J Oncol. 2011;2011:948786.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Mazeh H, Benavidez J, Poehls JL, Youngwirth L, Chen H, Sippel RS. In patients with thyroid cancer of follicular cell origin, a family history of nonmedullary thyroid cancer in one first-degree relative is associated with more aggressive disease. Thyroid. 2012;22(1):3–8.

    Article  PubMed  Google Scholar 

  164. Jiwang L, Zhendong L, Shuchun L, Bo H, Yanguo L. Clinicopathologic characteristics of familial versus sporadic papillary thyroid carcinoma. Acta Otorhinolaryngol Ital. 2015;35(4):234–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Leux C, Truong T, Petit C, Baron-Dubourdieu D, Guenel P. Family history of malignant and benign thyroid diseases and risk of thyroid cancer: a population-based case-control study in New Caledonia. Cancer Causes Control. 2012;23(5):745–55.

    Article  PubMed  Google Scholar 

  166. Pitoia F, Cross G, Salvai ME, Abelleira E, Niepomniszcze H. Patients with familial non-medullary thyroid cancer have an outcome similar to that of patients with sporadic papillary thyroid tumors. Arq Bras Endocrinol Metabol. 2011;55(3):219–23.

    Article  PubMed  Google Scholar 

  167. Tavarelli M, Russo M, Terranova R, Scollo C, Spadaro A, Sapuppo G, et al. Familial non-medullary thyroid cancer represents an independent risk factor for increased cancer aggressiveness: a retrospective analysis of 74 families. Front Endocrinol. 2015;6:117.

    Article  Google Scholar 

  168. Hillenbrand A, Varhaug JE, Brauckhoff M, Pandev R, Haufe S, Dotzenrath C, et al. Familial nonmedullary thyroid carcinoma-clinical relevance and prognosis. A European multicenter study. ESES Vienna presentation. Langenbeck's Arch Surg. 2010;395(7):851–8.

    Article  Google Scholar 

  169. Loh KC. Familial nonmedullary thyroid carcinoma: a meta-review of case series. Thyroid. 1997;7(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  170. Mazeh H, Sippel RS. Familial nonmedullary thyroid carcinoma. Thyroid. 2013;23(9):1049–56.

    Article  PubMed  Google Scholar 

  171. Sippel RS, Caron NR, Clark OH. An evidence-based approach to familial nonmedullary thyroid cancer: screening, clinical management, and follow-up. World J Surg. 2007;31(5):924–33.

    Article  PubMed  Google Scholar 

  172. Wang X, Cheng W, Li J, Su A, Wei T, Liu F, et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol. 2015;172(6):R253–62.

    Article  CAS  PubMed  Google Scholar 

  173. Lee YM, Yoon JH, Yi O, Sung TY, Chung KW, Kim WB, et al. Familial history of non-medullary thyroid cancer is an independent prognostic factor for tumor recurrence in younger patients with conventional papillary thyroid carcinoma. J Surg Oncol. 2014;109(2):168–73.

    Article  PubMed  Google Scholar 

  174. Pinto AE, Silva GL, Henrique R, Menezes FD, Teixeira MR, Leite V, et al. Familial vs sporadic papillary thyroid carcinoma: a matched-case comparative study showing similar clinical/prognostic behaviour. Eur J Endocrinol. 2014;170(2):321–7.

    Article  CAS  PubMed  Google Scholar 

  175. Miki H, Oshimo K, Inoue H, Kawano M, Tanaka K, Komaki K, et al. Incidence of ultrasonographically-detected thyroid nodules in healthy adults. Tokushima J Exp Med. 1993;40(1-2):43–6.

    CAS  PubMed  Google Scholar 

  176. Uchino S, Noguchi S, Yamashita H, Murakami T, Watanabe S, Ogawa T, et al. Detection of asymptomatic differentiated thyroid carcinoma by neck ultrasonographic screening for familial nonmedullary thyroid carcinoma. World J Surg. 2004;28(11):1099–102.

    Article  PubMed  Google Scholar 

  177. Stulak JM, Grant CS, Farley DR, Thompson GB, van Heerden JA, Hay ID, et al. Value of preoperative ultrasonography in the surgical management of initial and reoperative papillary thyroid cancer. Arch Surg. 2006;141(5):489–94. discussion 94–6.

    Article  PubMed  Google Scholar 

  178. Roh JL, Park JY, Kim JM, Song CJ. Use of preoperative ultrasonography as guidance for neck dissection in patients with papillary thyroid carcinoma. J Surg Oncol. 2009;99(1):28–31.

    Article  PubMed  Google Scholar 

  179. Vriens MR, Sabanci U, Epstein HD, Ngai S, Duh QY, Siperstein AE, et al. Reliability of fine-needle aspiration in patients with familial nonmedullary thyroid cancer. Thyroid. 1999;9(10):1011–6.

    Article  CAS  PubMed  Google Scholar 

  180. Triponez F, Wong M, Sturgeon C, Caron N, Ginzinger DG, Segal MR, et al. Does familial non-medullary thyroid cancer adversely affect survival? World J Surg. 2006;30(5):787–93.

    Article  PubMed  Google Scholar 

  181. Alsanea O, Clark OH. Familial thyroid cancer. Curr Opin Oncol. 2001;13(1):44–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Electron Kebebew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klubo-Gwiezdzinska, J., Kushchayeva, Y., Gara, S.K., Kebebew, E. (2018). Familial Non-Medullary Thyroid Cancer. In: Mallick, U.K., Harmer, C. (eds) Practical Management of Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-91725-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91725-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91724-5

  • Online ISBN: 978-3-319-91725-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics