Skip to main content

Integral Transform Approach to Solving Klein–Gordon Equation with Variable Coefficients

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

  • 1270 Accesses

Abstract

In this review, we present an integral transform that maps solutions of some class of the partial differential equations with time-independent coefficients to solutions of more complicated equations, which have time-dependent coefficients. We illustrate this transform by applications to model equations. In particular, we give applications to the Klein–Gordon and wave equations in the curved spacetimes such as the de Sitter universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bachelot, Waves in the Witten bubble of nothing and the Hawking wormhole. Commun. Math. Phys. 351(2), 599–651 (2017). https://doi.org/10.1007/s00220-016-2792-7

  2. D. Baskin, Strichartz estimates on asymptotically de sitter spaces. Ann. Henri Poincaré 14(2), 221–252 (2013)

    Google Scholar 

  3. J. Bros, H. Epstein, U. Moschella, Particle decays and stability on the de Sitter universe. Ann. Henri Poincaré 11(4), 611–658 (2010)

    Google Scholar 

  4. J.L. Costa, A. Alho, J. Natário, Spherical linear waves in de Sitter spacetime. J. Math. Phys. 53(5), 052501, 9 (2012)

    Google Scholar 

  5. H. Epstein, U. Moschella, De Sitter tachyons and related topics. Commun. Math. Phys. 336(1), 381–430 (2015)

    Google Scholar 

  6. A. Galstian, T. Kinoshita, K. Yagdjian, A note on wave equation in Einstein and de Sitter space-time. J. Math. Phys. 51(5), 052501 (2010)

    Google Scholar 

  7. A. Galstian, K. Yagdjian, Microlocal analysis for waves propagating in Einstein & de Sitter spacetime. Math. Phys. Anal. Geom. 17(1–2), 223–246 (2014)

    Google Scholar 

  8. A. Galstian, K. Yagdjian, Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes. Nonlinear Anal. 113, 339–356 (2015)

    Google Scholar 

  9. A. Galstian, T. Kinoshita, Representation of solutions for 2nd order one-dimensional model Hyperbolic equations. J. d’Analyse Mathematique. 130, 355–374 (2016)

    Google Scholar 

  10. A. Galstian, K. Yagdjian, Global in time existence of the self-interacting scalar field in de Sitter spacetimes. Nonlinear Anal. Real World Appl. 34, 110–139 (2017)

    Google Scholar 

  11. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1 (Cambridge University Press, New York, 1973)

    Google Scholar 

  12. S. Helgason, Wave equations on homogeneous spaces, Lie Group Representations, vol. III (University of Maryland, College Park, 1982/1983); Lecture Notes in Mathematics, vol. 1077 (Springer, Berlin, 1984), pp. 254–287

    Google Scholar 

  13. A. Higuchi, Forbidden mass range for spin-\(2\) field theory in de Sitter spacetime. Nucl. Phys. B 282(2), 397–436 (1987)

    Google Scholar 

  14. P. Hintz, A. Vasy, Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and Minkowski spacetimes. Anal. PDE 8(8), 1807–1890 (2015)

    Google Scholar 

  15. P.D. Lax, R.S. Phillips, Translation representations for the solution of the non-Euclidean wave equation. Commun. Pure Appl. Math. 32(5), 617–667 (1979)

    Google Scholar 

  16. J. Näf, P. Jetzer, M. Sereno, On gravitational waves in spacetimes with a nonvanishing cosmological constant. Phys. Rev. D 79, 024014 (2009)

    Google Scholar 

  17. M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime. J. Math. Anal. Appl. 410(1), 445–454 (2014)

    Google Scholar 

  18. W.A. Strauss, Partial Differential Equations: An Introduction, 2nd edn. (Wiley, Chichester, 2008)

    Google Scholar 

  19. A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381–513 (2013)

    Google Scholar 

  20. K. Yagdjian, A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J. Differ. Equ. 206, 227–252 (2004)

    Google Scholar 

  21. K. Yagdjian, A. Galstian, Fundamental solutions for the klein-Gordon equation in de Sitter spacetime. Commun. Math. Phys. 285, 293–344 (2009)

    Google Scholar 

  22. K. Yagdjian, The semilinear Klein-Gordon equation in de Sitter spacetime. Discret. Contin. Dyn. Syst. Ser. S 2(3), 679–696 (2009)

    Google Scholar 

  23. K. Yagdjian, On the global solutions of the Higgs boson equation. Commun. Partial Differ. Equ. 37(3), 447–478 (2012)

    Google Scholar 

  24. K. Yagdjian, Huygens’ principle for the Klein-Gordon equation in the de Sitter spacetime. J. Math. Phys. 54(9), 091503 (2013)

    Google Scholar 

  25. K. Yagdjian, Semilinear hyperbolic equations in curved spacetime, Fourier Analysis, Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations. Trends in Mathematics (Birkhäuser Mathematics, Basel, 2014), pp. 391–415

    Google Scholar 

  26. K. Yagdjian, Integral transform approach to solving Klein-Gordon equation with variable coefficients. Math. Nachr. 288(17–18), 2129–2152 (2015)

    Google Scholar 

  27. K. Yagdjian, Integral transform approach to generalized Tricomi equations. J. Differ. Equ. 259, 5927–5981 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper was completed during my visit at the Technical University Bergakademie Freiberg in the summer of 2016. I am grateful to Michael Reissig for the invitation to Freiberg and for the warm hospitality. I express my gratitude to the Deutsche Forschungsgemeinschaft for the financial support under the grant GZ: RE 961/21-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Yagdjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yagdjian, K. (2018). Integral Transform Approach to Solving Klein–Gordon Equation with Variable Coefficients. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_49

Download citation

Publish with us

Policies and ethics