Skip to main content

Continuation for Thin Film Hydrodynamics and Related Scalar Problems

  • Chapter
  • First Online:
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

This chapter illustrates how to apply continuation techniques in the analysis of a particular class of nonlinear kinetic equations that describe the time evolution of a single scalar field like a density or interface profiles of various types. We first systematically introduce these equations as gradient dynamics combining mass-conserving and nonmass-conserving fluxes followed by a discussion of nonvariational amendmends and a brief introduction to their analysis by numerical continuation. The approach is first applied to a number of common examples of variational equations, namely, Allen-Cahn- and Cahn–Hilliard-type equations including certain thin-film equations for partially wetting liquids on homogeneous and heterogeneous substrates as well as Swift–Hohenberg and Phase-Field-Crystal equations. Second we consider nonvariational examples as the Kuramoto–Sivashinsky equation, convective Allen–Cahn and Cahn–Hilliard equations and thin-film equations describing stationary sliding drops and a transversal front instability in a dip-coating. Through the different examples we illustrate how to employ the numerical tools provided by the packages auto07p and pde2path to determine steady, stationary and time-periodic solutions in one and two dimensions and the resulting bifurcation diagrams. The incorporation of boundary conditions and integral side conditions is also discussed as well as problem-specific implementation issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that nongradient terms \(|\nabla \phi |^2\) and \(\phi \nabla \phi \) are often related by a transformation that, however, also transforms conserved into nonconserved dynamics, therefore here we explicitly list both expressions.

  2. 2.

    Note that for ultrathin films it can be related to the adsorption per substrate area. This makes it possible to consider transitions between convective dynamics of the bulk of a drop and diffusive dynamics of a molecular adsorption layer (or precursor film) covering the substrate outside the drop [141].

  3. 3.

    Consider the discussion of dry and moist case in Ref. [32].

  4. 4.

    Note that different sign conventions for r are in use.

  5. 5.

    Note that in the representation with the norm as solution measure each branch of inhomogeneous steady states actually represents two branches related by symmetry \(\phi (x) \rightarrow -\phi (x)\).

References

  1. Achim, C.V., Ramos, J.A.P., Karttunen, M., Elder, K.R., Granato, E., Ala-Nissila, T., Ying, S.C.: Nonlinear driven response of a phase-field crystal in a periodic pinning potential. Phys. Rev. E 79, 011,606 (2009)

    Google Scholar 

  2. Alfaro, C., Depassier, M.: A 5-mode bifurcation-analysis of a Kuramoto-Sivashinsky equation with dispersion. Phys. Lett. A 184, 184–189 (1994)

    Article  MathSciNet  Google Scholar 

  3. Allen, S., Cahn, J.: Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater. 27, 1085–1095 (1979)

    Article  Google Scholar 

  4. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Classics in Applied Mathematics. Society for Industrial Mathematics, Philadelphia (1987)

    Google Scholar 

  5. Alvarez-Socorro, A., Clerc, M., Gonzalez-Cortes, G., Wilson, M.: Nonvariational mechanism of front propagation: theory and experiments. Phys. Rev. E 95, 010,202 (2017)

    Google Scholar 

  6. Archer, A.J., Rauscher, M.: Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic? J. Phys. A-Math. Gen. 37, 9325–9333 (2004)

    Article  MathSciNet  Google Scholar 

  7. Archer, A.J., Robbins, M.J., Thiele, U., Knobloch, E.: Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids. Phys. Rev. E 86, 031,603 (2012)

    Google Scholar 

  8. Avitabile, D., Lloyd, D., Burke, J., Knobloch, E., Sandstede, B.: To snake or not to snake in the planar Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 9, 704–733 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bestehorn, M., Merkt, D.: Regular surface patterns on Rayleigh-Taylor unstable evaporating films heated from below. Phys. Rev. Lett. 97, 127,802 (2006)

    Google Scholar 

  10. Bier, S., Gavish, N., Uecker, H., Yochelis, A.: Mean field approach to first and second order phase transitions in ionic liquids. Phys. Rev. E 95, 060,201 (2017)

    Google Scholar 

  11. Bindel, D., Friedman, M., Govaerts, W., Hughes, J., Kuznetsov, Y.: Numerical computation of bifurcations in large equilibrium systems in matlab. J. Comput. Appl. Math. 261, 232–248 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009)

    Article  Google Scholar 

  13. Bordyugov, G., Engel, H.: Continuation of spiral waves. Phys. D 228, 49–58 (2007)

    Article  MathSciNet  Google Scholar 

  14. Bortolozzo, U., Clerc, M., Residori, S.: Local theory of the slanted homoclinic snaking bifurcation diagram. Phys. Rev. E 78, 036,214 (2008)

    Google Scholar 

  15. Bribesh, F.A.M., Frastia, L., Thiele, U.: Decomposition driven interface evolution for layers of binary mixtures: III. two-dimensional steady film states. Phys. Fluids 24, 062,109 (2012)

    Google Scholar 

  16. Buono, P.L., van Veen, L., Frawley, E.: Hidden symmetry in a Kuramoto-Sivashinsky initial-boundary value problem. Int. J. Bifurc. Chaos 27(9), 1750,136 (2017)

    Article  MathSciNet  Google Scholar 

  17. Burke, J., Dawes, J.: Localized states in an extended Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 11, 261–284 (2012)

    Article  MathSciNet  Google Scholar 

  18. Burke, J., Knobloch, E.: Localized states in the generalized Swift-Hohenberg equation. Phys. Rev. E 73, 056,211 (2006)

    Google Scholar 

  19. Burke, J., Knobloch, E.: Homoclinic snaking: structure and stability. Chaos 17, 037,102 (2007)

    Article  MathSciNet  Google Scholar 

  20. Burke, J., Houghton, S., Knobloch, E.: Swift-Hohenberg equation with broken reflection symmetry. Phys. Rev. E 80, 036,202 (2009)

    Google Scholar 

  21. Cahn, J.W.: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 93–99 (1965)

    Article  Google Scholar 

  22. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. 1. Interfacual free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  23. Cates, M., Tailleur, J.: Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015)

    Article  Google Scholar 

  24. Chang, H.C.: Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103–136 (1994)

    Article  MathSciNet  Google Scholar 

  25. Chen, X.D., Lu, N., Zhang, H., Hirtz, M., Wu, L.X., Fuchs, H., Chi, L.F.: Langmuir-Blodgett patterning of phospholipid microstripes: effect of the second component. J. Phys. Chem. B 110, 8039–8046 (2006)

    Article  Google Scholar 

  26. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)

    Article  Google Scholar 

  27. Crawford, J.D., Golubitsky, M., Gomes, M.G.M., Knobloch, E., Stewart, I.M.: Boundary conditions as symmetry constraints. In: Roberts, M., Stewart, I. (eds.) Singularity Theory and Its Applications, Part II. Lecture Notes in Mathematics, vol. 1463, pp. 63–79. Springer, New York (1991)

    Google Scholar 

  28. Cross, M.C., Hohenberg, P.C.: Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  29. Cvitanović, P., Davidchack, R.L., Siminos, E.: On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9(1), 1–33 (2010)

    Article  MathSciNet  Google Scholar 

  30. Dankowicz, H., Schilder, F.: Recipes for Continuation. Computing in Science and Engineering, vol. 11. SIAM, Philadelphia (2013). http://sourceforge.net/projects/cocotools/. Accessed 25 Feb 18

  31. Dawes, J.H.P.: Localized pattern formation with a large-scale mode: slanted snaking. SIAM J. Appl. Dyn. Syst. 7, 186–206 (2008)

    Article  MathSciNet  Google Scholar 

  32. de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  33. Dhooge, A., Govaerts, W., Kuznetsov, Y.: MATCONT: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  34. Dhooge, A., Govaerts, W., Kuznetsov, Y., Mestrom, W., Riet, A.: CL\_MATCONT (2008). www.sourceforge.net/projects/matcont/. Accessed 25 Feb 18

  35. Dijkstra, H.A., Wubs, F.W., Cliffe, A.K., Doedel, E., Dragomirescu, I., Eckhardt, B., Gelfgat, A.Y., Hazel, A.L., Lucarini, V., Salinger, A.G., Phipps, E.T., Sanchez-Umbria, J., Schuttelaars, H., Tuckerman, L.S., Thiele, U.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 1–45 (2014)

    Article  MathSciNet  Google Scholar 

  36. Doedel, E.J., Oldeman, B.E.: AUTO07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2009)

    Google Scholar 

  37. Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493–520 (1991)

    Article  MathSciNet  Google Scholar 

  38. Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (II) bifurcation in infinite dimensions. Int. J. Bifurc. Chaos 1, 745–772 (1991)

    Article  MathSciNet  Google Scholar 

  39. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.: AUTO: continuation and bifurcation software for ordinary differential equations (with HomCont) (1997). http://indy.cs.concordia.ca/auto/. Accessed 25 Feb 18

  40. Dohnal, T., Siegl, P.: Bifurcation of eigenvalues in nonlinear problems with antilinear symmetry. J. Math. Phys. 57, 093,502 (2016)

    Article  MathSciNet  Google Scholar 

  41. Dohnal, T., Uecker, H.: Bifurcation of nonlinear Bloch waves from the spectrum in the nonlinear Gross-Pitaevskii equation. J. Nonlinear Sci. 26(3), 581–618 (2016)

    Article  MathSciNet  Google Scholar 

  42. Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  43. Doumenc, F., Guerrier, B.: Self-patterning induced by a solutal Marangoni effect in a receding drying meniscus. Europhys. Lett. 103, 14,001 (2013)

    Article  Google Scholar 

  44. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051,605 (2004)

    Google Scholar 

  45. Emmerich, H., Löwen, H., Wittkowski, R., Gruhn, T., Toth, G., Tegze, G., Granasy, L.: Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Adv. Phys. 61, 665–743 (2012)

    Article  Google Scholar 

  46. Engelnkemper, S.: Nonlinear analysis of physicochemically driven dewetting – statics and dynamics. Ph.D. thesis, Westfälische Wilhelms-Universität Münster (2017)

    Google Scholar 

  47. Engelnkemper, S., Wilczek, M., Gurevich, S.V., Thiele, U.: Morphological transitions of sliding drops - dynamics and bifurcations. Phys. Rev. Fluids 1, 073,901 (2016)

    Google Scholar 

  48. Fischer, H.P., Dieterich, W.: Early-time kinetics of ordering in the presence of interactions with a concentration field. Phys. Rev. E 56, 6909–6916 (1997)

    Article  Google Scholar 

  49. Formica, G., Arena, A., Lacarbonara, W., Dankowicz, H.: Coupling FEM with parameter continuation for analysis of bifurcations of periodic responses in nonlinear structures. J. Comput. Nonlinear Dyn. 8(2) (2012)

    Article  Google Scholar 

  50. Frastia, L., Archer, A.J., Thiele, U.: Modelling the formation of structured deposits at receding contact lines of evaporating solutions and suspensions. Soft Matter 8, 11,363–11,386 (2012)

    Article  Google Scholar 

  51. Frisch, U., Bec, J.: Burgulence. In: Lesieur, M., Yaglom, A., David, F. (eds.) New trends in turbulence: nouveaux aspects, Les Houches - Ecole d’Ete de Physique Theorique, vol. 74, pp. 341–383. Springer, Berlin (2001)

    Google Scholar 

  52. Galvagno, M., Tseluiko, D., Lopez, H., Thiele, U.: Continuous and discontinuous dynamic unbinding transitions in drawn film flow. Phys. Rev. Lett. 112, 137,803 (2014)

    Google Scholar 

  53. Gavish, N.: Poisson-Nernst-Planck equations with steric effects–non-convexity and multiple stationary solutions. Phys. D 368, 50–65 (2018)

    Article  MathSciNet  Google Scholar 

  54. Golovin, A.A., Pismen, L.M.: Dynamic phase separation: from coarsening to turbulence via structure formation. Chaos 14, 845–854 (2004)

    Article  Google Scholar 

  55. Golovin, A.A., Nepomnyashchy, A.A., Davis, S.H., Zaks, M.A.: Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett. 86, 1550–1553 (2001)

    Article  Google Scholar 

  56. Gomez-Solano, J.R., Boyer, D.: Coarsening in potential and nonpotential models of oblique stripe patterns. Phys. Rev. E 76, 041,131 (2007)

    Google Scholar 

  57. Govaerts, W.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia (2000)

    Google Scholar 

  58. Gurevich, S.V., Javaloyes, J.: Spatial instabilities of light bullets in passively-mode-locked lasers. Phys. Rev. A 96, 023,821 (2017)

    Google Scholar 

  59. Hazel, A., Heil, M.: oomph-lib (2017). http://oomph-lib.maths.man.ac.uk/doc/html. Accessed 25 Feb 18

  60. Hirose, Y., Komura, S., Andelman, D.: Concentration fluctuations and phase transitions in coupled modulated bilayers. Phys. Rev. E 86, 021,916 (2012)

    Google Scholar 

  61. Houghton, S., Knobloch, E.: Swift-Hohenberg equation with broken cubic-quintic nonlinearity. Phys. Rev. E 84, 016,204 (2011)

    Google Scholar 

  62. Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation - a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)

    Article  MathSciNet  Google Scholar 

  63. Jolly, M.S., Kevrekidis, I.G., Titi, E.S.: Approximate inertial manifolds for the Kuramoto-Sivashinsky equation - analysis and computations. Phys. D 44, 38–60 (1990)

    Article  MathSciNet  Google Scholar 

  64. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)

    Article  Google Scholar 

  65. Keller, H.: Numerical solution of bifurcation and nonlinear eigenvalue problems. Application of bifurcation theory. In: Proceedings of the Advanced Seminar, Madison/Wisconsin, vol. 1976, pp. 359–384 (1977)

    Google Scholar 

  66. Keller, H.B.: Lectures on numerical methods in bifurcation problems. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 79. Springer, Berlin (1987)

    Google Scholar 

  67. Kevrekidis, I.G., Nicolaenko, B., Scovel, J.C.: Back in the saddle again - a computer-assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math. 50, 760–790 (1990)

    Article  MathSciNet  Google Scholar 

  68. Kliakhandler, I.L.: Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations. J. Fluid Mech. 391, 45–65 (1999)

    Article  MathSciNet  Google Scholar 

  69. Kliakhandler, I.L.: Inverse cascade in film flows. J. Fluid Mech. 423, 205–225 (2000)

    Article  MathSciNet  Google Scholar 

  70. Köpf, M.H., Thiele, U.: Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model. Nonlinearity 27, 2711–2734 (2014)

    Article  MathSciNet  Google Scholar 

  71. Köpf, M.H., Gurevich, S.V., Friedrich, R., Thiele, U.: Substrate-mediated pattern formation in monolayer transfer: a reduced model. New J. Phys. 14, 023,016 (2012)

    Article  Google Scholar 

  72. Kozyreff, G., Tlidi, M.: Nonvariational real Swift-Hohenberg equation for biological, chemical, and optical systems. Chaos 17, 037,103 (2007)

    Article  Google Scholar 

  73. Krauskopf, B., Osinga, H.M., Galan-Vioque, J. (eds.): Numerical Continuation Methods for Dynamical Systems. Springer, Dordrecht (2007)

    Google Scholar 

  74. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)

    Article  Google Scholar 

  75. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2010)

    Google Scholar 

  76. Langer, J.S.: An introduction to the kinetics of first-order phase transitions. In: Godreche, C. (ed.) Solids Far from Equilibrium, pp. 297–363. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  77. Lin, T.S., Rogers, S., Tseluiko, D., Thiele, U.: Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder. Phys. Fluids 28, 082,102 (2016)

    Article  Google Scholar 

  78. Lloyd, D.J.B., Sandstede, B., Avitabile, D., Champneys, A.R.: Localized hexagon patterns of the planar Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 1049–1100 (2008)

    Article  MathSciNet  Google Scholar 

  79. Lust, K.: Continuation and bifurcation analysis of periodic solutions of partial differential equations. Continuation Methods in Fluid Dynamics (Aussois, 1998). Notes on Numerical Fluid Mechanics, vol. 74, pp. 191–202. Vieweg, Braunschweig (2000)

    Google Scholar 

  80. Maier-Paape, S., Mischaikow, K., Wanner, T.: Structure of the attractor of the Cahn-Hilliard equation on a square. Int. J. Bifurc. Chaos 17, 1221–1263 (2007)

    Article  MathSciNet  Google Scholar 

  81. Maier-Paape, S., Miller, U., Mischaikow, K., Wanner, T.: Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev. Mat. Complut. 21, 351–426 (2008)

    Article  MathSciNet  Google Scholar 

  82. Makrides, E., Sandstede, B.: Predicting the bifurcation structure of localized snaking patterns. Phys. D 268, 59–78 (2014)

    Article  MathSciNet  Google Scholar 

  83. Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Phys. Condens. Matter 12, A413–A418 (2000)

    Google Scholar 

  84. Mei, Z.: Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, Berlin (2000)

    Chapter  Google Scholar 

  85. Menzel, A., Löwen, H.: Traveling and resting crystals in active systems. Phys. Rev. Lett. 110, 055,702 (2013)

    Google Scholar 

  86. Mitlin, V.S.: Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 156, 491–497 (1993)

    Article  Google Scholar 

  87. Morales, M., Rojas, J., Torres, I., Rubio, E.: Modeling ternary mixtures by mean-field theory of polyelectrolytes: coupled Ginzburg-Landau and Swift-Hohenberg equations. Phys. A 391, 779–791 (2012)

    Article  Google Scholar 

  88. Münch, A.: Pinch-off transition in Marangoni-driven thin films. Phys. Rev. Lett. 91, 016,105 (2003)

    Google Scholar 

  89. Náraigh, L.Ó., Thiffeault, J.L.: Nonlinear dynamics of phase separation in thin films. Nonlinearity 23, 1559–1583 (2010)

    Article  MathSciNet  Google Scholar 

  90. Net, M., Sánchez, J.: Continuation of bifurcations of periodic orbits for large-scale systems. SIAM J. Appl. Dyn. Syst. 14(2), 674–698 (2015)

    Article  MathSciNet  Google Scholar 

  91. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors. Phys. D 16(2), 155–183 (1985)

    Article  MathSciNet  Google Scholar 

  92. Novick-Cohen, A.: The nonlinear Cahn-Hilliard equation: transition from spinodal decomposition to nucleation behavior. J. Stat. Phys. 38, 707–723 (1985)

    Article  Google Scholar 

  93. Novick-Cohen, A., Peletier, L.: Steady-states of the one-dimensional Cahn-Hilliard equation. Proc. R. Soc. Edinb. Sect. A-Math. 123, 1071–1098 (1993)

    Article  MathSciNet  Google Scholar 

  94. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Article  Google Scholar 

  95. Oza, A., Heidenreich, S., Dunkel, J.: Generalized Swift-Hohenberg models for dense active suspensions. Eur. Phys. J. E 39, 97 (2016)

    Article  Google Scholar 

  96. Pismen, L.M., Pomeau, Y.: Disjoining potential and spreading of thin liquid layers in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E 62, 2480–2492 (2000)

    Article  MathSciNet  Google Scholar 

  97. Pismen, L.M., Thiele, U.: Asymptotic theory for a moving droplet driven by a wettability gradient. Phys. Fluids 18, 042,104 (2006)

    Article  Google Scholar 

  98. Pomeau, Y., Zaleski, S.: The Kuramoto-Sivashinsky equation: a caricature of hydrodynamic turbulence? In: Frisch, U., Keller, J. B., Papanicolaou, G., Pironneau, O. (eds.) Macroscopic Modelling of Turbulent Flows (Nice, 1984). Lecture Notes in Physics, vol. 230, pp. 296–303. Springer, Berlin (1985)

    Google Scholar 

  99. Pototsky, A., Archer, A.J., Savel’ev, S.E., Thiele, U., Marchesoni, F.: Ratcheting of driven attracting colloidal particles: temporal density oscillations and current multiplicity. Phys. Rev. E 83, 061,401 (2011)

    Google Scholar 

  100. Pototsky, A., Thiele, U., Archer, A.: Coarsening modes of clusters of aggregating particles. Phys. Rev. E 89, 032,144 (2014)

    Google Scholar 

  101. Sakaguchi, H., Brand, H.R.: Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation. Phys. D 97, 274–285 (1996)

    Article  Google Scholar 

  102. Salinger, A.: LOCA (2016). www.cs.sandia.gov/LOCA/. Accessed 25 Feb 18

  103. Sánchez, J., Net, M.: Numerical continuation methods for large-scale dissipative dynamical systems. Eur. Phys. J. Spec. Top. 225, 2465–2486 (2016)

    Article  Google Scholar 

  104. Sánchez, J., Garcia, F., Net, M.: Computation of azimuthal waves and their stability in thermal convection in rotating spherical shells with application to the study of a double-Hopf bifurcation. Phys. Rev. E 033014 (2013)

    Google Scholar 

  105. Schelte, C., Javaloyes, J., Gurevich, S.V.: Dynamics of temporal localized states in passively mode-locked semiconductor lasers. Phys. Rev. A 97, 053820 (2018)

    Google Scholar 

  106. Schüler, D., Alonso, S., Torcini, A., Bär, M.: Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Chaos 24, 043,142 (2014)

    Article  MathSciNet  Google Scholar 

  107. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer, Berlin (2010)

    Book  Google Scholar 

  108. Sharma, A., Jameel, A.: Stability of thin polar films on non-wettable substrates. J. Chem. Soc. Faraday Trans. 90, 625–627 (1994)

    Article  Google Scholar 

  109. Siero, E., Doelman, A., Eppinga, M.B., Rademacher, J.D.M., Rietkerk, M., Siteur, K.: Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. Chaos 25(3) (2015)

    Article  MathSciNet  Google Scholar 

  110. Sivashinsky, G.: Nonlinear analysis of hydrodynamic instability in laminar flames. I - derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977)

    Article  MathSciNet  Google Scholar 

  111. Snoeijer, J.H., Le Grand-Piteira, N., Limat, L., Stone, H.A., Eggers, J.: Cornered drops and rivulets. Phys. Fluids 19, 042,104 (2007)

    Article  Google Scholar 

  112. Snoeijer, J.H., Ziegler, J., Andreotti, B., Fermigier, M., Eggers, J.: Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100, 244,502 (2008)

    Google Scholar 

  113. Sonnet, A., Virga, E.: Dynamics of dissipative ordered fluids. Phys. Rev. E 64, 031,705 (2001)

    Google Scholar 

  114. Spratte, K., Chi, L.F., Riegler, H.: Physisorption instabilities during dynamic Langmuir wetting. Europhys. Lett. 25, 211–217 (1994)

    Article  Google Scholar 

  115. Stenhammar, J., Tiribocchi, A., Allen, R., Marenduzzo, D., Cates, M.: Continuum theory of phase separation kinetics for active Brownian particles. Phys. Rev. Lett. 111, 145,702 (2013)

    Google Scholar 

  116. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  117. Thiele, U.: Open questions and promising new fields in dewetting. Eur. Phys. J. E 12, 409–416 (2003)

    Article  Google Scholar 

  118. Thiele, U.: Structure formation in thin liquid films. In: Kalliadasis, S., Thiele, U. (eds.) Thin Films of Soft Matter, pp. 25–93. Springer, Wien (2007)

    Google Scholar 

  119. Thiele, U.: Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys. Condens. Matter 22, 084,019 (2010)

    Google Scholar 

  120. Thiele, U.: Patterned deposition at moving contact line. Adv. Colloid Interface Sci. 206, 399–413 (2014)

    Article  Google Scholar 

  121. Thiele, U., Velarde, M.G., Neuffer, K.: Dewetting: film rupture by nucleation in the spinodal regime. Phys. Rev. Lett. 87, 016,104 (2001)

    Google Scholar 

  122. Thiele, U., Brusch, L., Bestehorn, M., Bär, M.: Modelling thin-film dewetting on structured substrates and templates: bifurcation analysis and numerical simulations. Eur. Phys. J. E 11, 255–271 (2003)

    Article  Google Scholar 

  123. Thiele, U., Madruga, S., Frastia, L.: Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states. Phys. Fluids 19, 122,106 (2007)

    Article  Google Scholar 

  124. Thiele, U., Archer, A.J., Robbins, M.J., Gomez, H., Knobloch, E.: Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. Phys. Rev. E 87, 042,915 (2013)

    Google Scholar 

  125. Thiele, U., Archer, A., Pismen, L.: Gradient dynamics models for liquid films with soluble surfactant. Phys. Rev. Fluids 1, 083,903 (2016)

    Google Scholar 

  126. Toth, G., Tegze, G., Pusztai, T., Toth, G., Granasy, L.: Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d. J. Phys. Condens. Matter 22, 364,101 (2010)

    Google Scholar 

  127. Tseluiko, D., Galvagno, M., Thiele, U.: Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems. Eur. Phys. J. E 37, 33 (2014)

    Article  Google Scholar 

  128. Uecker, H.: Optimal harvesting and spatial patterns in a semi arid vegetation system. Nat. Resour. Model. 29(2), 229–258 (2016)

    Article  MathSciNet  Google Scholar 

  129. Uecker, H.: User guide on Hopf bifurcation and time periodic orbits with pde2path (2017). Available at [131]

    Google Scholar 

  130. Uecker, H.: (2017), www.staff.uni-oldenburg.de/hannes.uecker/pde2path. Accessed 25 Feb 18

  131. Uecker, H.: Hopf bifurcation and time periodic orbits with pde2path – algorithms and applications. Commun. Comput. Phys. (to appear) (2018)

    Google Scholar 

  132. Uecker, H.: Steady bifurcations of higher multiplicity in pde2path, preprint (2018)

    Google Scholar 

  133. Uecker, H., Wetzel, D.: Numerical results for snaking of patterns over patterns in some 2D Selkov-Schnakenberg reaction-diffusion systems. SIADS 13–1, 94–128 (2014)

    Article  MathSciNet  Google Scholar 

  134. Uecker, H., Wetzel, D., Rademacher, J.: pde2path - a Matlab package for continuation and bifurcation in 2D elliptic systems. NMTMA 7, 58–106 (2014)

    MathSciNet  MATH  Google Scholar 

  135. van Saarloos, W.: Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A 37, 211–229 (1988)

    Article  MathSciNet  Google Scholar 

  136. Wetzel, D.: Pattern analysis in a benthic bacteria-nutrient system. Math. Biosci. Eng. 13(2), 303–332 (2016)

    MathSciNet  MATH  Google Scholar 

  137. Wilczek, M., Tewes, W.B.H., Gurevich, S.V., Köpf, M.H., Chi, L., Thiele, U.: Modelling pattern formation in dip-coating experiments. Math. Model. Nat. Phenom. 10, 44–60 (2015)

    Article  MathSciNet  Google Scholar 

  138. Wilczek, M., Tewes, W., Engelnkemper, S., Gurevich, S.V., Thiele, U.: Sliding drops - ensemble statistics from single drop bifurcations. Phys. Rev. Lett. 119, 204,501 (2017)

    Google Scholar 

  139. Wilczek, M., Zhu, J., Chi, L., Thiele, U., Gurevich, S.V.: Dip-coating with prestructured substrates: transfer of simple liquids and Langmuir-Blodgett monolayers. J. Phys. Condens. Matter 29, 014,002 (2017)

    Google Scholar 

  140. Wittkowski, R., Tiribocchi, A., Stenhammar, J., Allen, R., Marenduzzo, D., Cates, M.: Scalar phi(4) field theory for active-particle phase separation. Nat. Commun. 5, 4351 (2014)

    Article  Google Scholar 

  141. Yin, H., Sibley, D., Thiele, U., Archer, A.: Films, layers and droplets: the effect of near-wall fluid structure on spreading dynamics. Phys. Rev. E 95, 023,104 (2017)

    Google Scholar 

  142. Zaks, M., Podolny, A., Nepomnyashchy, A., Golovin, A.: Periodic stationary patterns governed by a convective Cahn-Hilliard equation. SIAM J. Appl. Math. 66, 700–720 (2006)

    Article  MathSciNet  Google Scholar 

  143. Zelnik, Y., Uecker, H., Feudel, U., Meron, E.: Desertification by front propagation? J. Theor. Biol. 27–35 (2017)

    Article  MathSciNet  Google Scholar 

  144. Zhelyazov, D., Han-Kwan, D., Rademacher, J.D.M.: Global stability and local bifurcations in a two-fluid model for tokamak plasma. SIAM J. Appl. Dyn. Syst. 14, 730–763 (2015)

    Article  MathSciNet  Google Scholar 

  145. Ziegler, J., Snoeijer, J., Eggers, J.: Film transitions of receding contact lines. Eur. Phys. J. Spec. Top. 166, 177–180 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

DW thanks the Deutsche Forschungsgemeinschaft for support (DFG, Grant No. Ue60/3-1); HU thanks Jens Rademacher for discussions on suitable formulations of constraints for Hopf orbits; UT acknowledges funding by the German-Israeli Foundation for Scientific Research and Development (GIF, Grant No. I-1361-401.10/2016); and SG acknowledges partial support by DFG within PAK 943 (Project No. 332704749). We thank Daniele Avitabile, Andrew Hazel, Edgar Knobloch, and David Lloyd for frequent discussions on continuation techniques, bifurcation theory and pattern formation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Engelnkemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Engelnkemper, S., Gurevich, S.V., Uecker, H., Wetzel, D., Thiele, U. (2019). Continuation for Thin Film Hydrodynamics and Related Scalar Problems. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics