Skip to main content

A Mathematical and Numerical Framework for the Simulation of Oscillatory Buoyancy and Marangoni Convection in Rectangular Cavities with Variable Cross Section

  • Chapter
  • First Online:
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

It is often assumed that two-dimensional flow can be used to model with an acceptable degree of approximation the preferred mode of instability of thermogravitational flows and thermocapillary flows in laterally heated shallow cavities for a relatively wide range of substances and conditions (essentially pure or compound semiconductor materials in liquid state for the case of buoyancy convection and molten oxide materials or salts and a variety of organic liquids for the case of Marangoni convection). In line with the general spirit of this book, such assumption is challenged by comparing two-dimensional and three-dimensional results expressly produced for such a purpose. More precisely, we present a general mathematical and numerical framework specifically developed to (1) explore the sensitivity of such phenomena to geometrical “irregularities” affecting the liquid container and (2) take advantage of a reduced number of spatial degrees of freedom when this is possible. Sudden variations in the shape of the container are modelled as a single backward-facing or forward-facing step on the bottom wall or a combination of both features. The resulting framework is applied to a horizontally extended configuration with undeformable free top liquid-gas surface (representative of the Bridgman crystal growth technique) and for two specific fluids pertaining to the above-mentioned categories of materials, namely molten silicon (Pr  <  1) and silicone oil (Pr  >  1. The assumption of flat interface is justified on the basis of physical reasoning and a scaling analysis. The overall model proves successful in providing useful insights into the stability behaviour of these fluids and the departure from the approximation of two-dimensional flow. It is shown that the presence of a topography in the bottom wall can lead to a variety of situations with significant changes in the emerging waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borcia, R., Bestehorn, M.: Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface. Phys. Rev. E 67(6), 066307 (2003)

    Article  Google Scholar 

  2. Bucchignani, E.: Numerical characterization of hydrothermal waves in a laterally heated shallow layer. Phys. Fluids 16(11), 3839–3849 (2004)

    Article  Google Scholar 

  3. Burguete, J., Mukolobwiez, N., Daviaud, N., Garnier, N., Chiffaudel, A.: Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Phys. Fluids 13(10), 2773–2787 (2001)

    Article  Google Scholar 

  4. Chorin, A.J.: Numerical solutions of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  5. Dupret, F., Van der Bogaert, N.: Modelling Bridgman and Czochralski growth. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth, vol. 2, pp. 877-1010. North-Holland, Amsterdam (1994)

    Google Scholar 

  6. Gelfgat, AYu., Bar-Yoseph, P.Z., Yarin, A.L.: On oscillatory instability of convective flows at low Prandtl number. J. Fluids Eng. 119, 823–830 (1997)

    Article  Google Scholar 

  7. Gelfgat, Ayu, Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315–334 (1999)

    Article  MathSciNet  Google Scholar 

  8. Gelfgat, AYu.: Time-dependent modeling of oscillatory instability of three-dimensional natural convection of air in a laterally heated cubic box. Theor. Comput. Fluid Dyn. 31, 447–469 (2017)

    Article  Google Scholar 

  9. Gill, A.E.: A theory of thermal oscillations in liquid metals. J. Fluid Mech. 64(3), 577–588 (1974)

    Article  Google Scholar 

  10. Golovin, A.A., Nepomnyashchy, A.A., Pismen, L.M.: Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid–gas system with deformable interface. J. Fluid Mech. 341, 317–341 (1997)

    Article  MathSciNet  Google Scholar 

  11. Gresho, P.M., Sani, R.T.: On pressure boundary conditions for the incompressible Navier-Stokes equations. Int. J. Num. Methods Fluids 7, 1111–1145 (1987)

    Article  Google Scholar 

  12. Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev Fluid Mech. 23, 413–453 (1991)

    Article  MathSciNet  Google Scholar 

  13. Guermond, J.-L., Quartapelle, L.: On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Meth. Fluids 26, 1039–1053 (1998)

    Article  MathSciNet  Google Scholar 

  14. Guermond, J.-L., Minev, P., Shen, J.: An Overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  Google Scholar 

  15. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  Google Scholar 

  16. Hart, J.E.: Stability of thin non-rotating Hadley circulations. J. Atmos. Sci. 29, 687–697 (1972)

    Article  Google Scholar 

  17. Hart, J.E.: A note on the stability of low-Prandtl-number Hadley circulations. J. Fluid Mech. 132, 271–281 (1983)

    Article  Google Scholar 

  18. Kasperski, G., Labrosse, G.: On the numerical treatment of viscous singularities in wall-confined thermocapillary convection. Phys. Fluids 12(11), 2695–2697 (2000)

    Article  Google Scholar 

  19. Kuo, H.P., Korpela, S.A.: Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from the side. Phys. Fluids 31, 33–42 (1988)

    Article  Google Scholar 

  20. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York, London (1969)

    MATH  Google Scholar 

  21. Lappa, M., Savino, R.: Parallel solution of the three-dimensional Marangoni flow instabilities in liquid bridges. Int. J. Num. Meth. Fluids 31, 911–925 (1999)

    Article  Google Scholar 

  22. Lappa, M.: Thermal convection and related instabilities in models of crystal growth from the melt on earth and in microgravity: past history and current status. Cryst. Res. Technol. 40(6), 531–549 (2005)

    Article  Google Scholar 

  23. Lappa, M.: Assessment of the role of axial vorticity in the formation of Particle Accumulation Structures (PAS) in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows. Phys. Fluids 25(1), 012101 (2013). 11 pages

    Article  MathSciNet  Google Scholar 

  24. Lappa, M.: Stationary solid particle attractors in standing waves. Phys. Fluids 26(1), 013305 (2014). 12 pages

    Article  Google Scholar 

  25. Lappa, M.: On the onset of multi-wave patterns in laterally heated floating zones for slightly supercritical conditions. Phys. Fluids 28(12), 124105 (2016). 22 pages

    Article  Google Scholar 

  26. Lappa, M.: Patterning behaviour of gravitationally modulated supercritical Marangoni flow in liquid layers. Phys. Rev. E 93(5), 053107 (2016). 13 pages

    Article  Google Scholar 

  27. Lappa, M.: On the oscillatory hydrodynamic modes in liquid metal layers with an obstruction located on the bottom. Int. J. Thermal Science 118, 303–319 (2017)

    Article  Google Scholar 

  28. Lappa, M.: Hydrothermal waves in two-dimensional liquid layers with sudden changes in the available cross-section. Int. J. Num. Meth. Heat Fluid Flow 27(11), 2629–2649 (2017)

    Article  Google Scholar 

  29. Lappa, M., Savino, R., Monti, R.: Influence of buoyancy forces on Marangoni flow instabilities in liquid bridges. Int. J. Num. Meth. Heat Fluid Flow 10(7), 721–749 (2000)

    Article  Google Scholar 

  30. Lappa, M.: Thermal Convection: Patterns, Evolution and Stability. Wiley, Chichester, England (2009)

    Book  Google Scholar 

  31. Lappa, M., Yasushiro, S., Imaishi, N.: 3D numerical simulation of on ground Marangoni flow instabilities in liquid bridges of low Prandtl number fluid. Int. J. Num. Meth. Heat Fluid Flow 13(3), 309–340 (2003)

    Article  Google Scholar 

  32. Laure, P., Roux, B.: Linear and non linear study of the Hadley circulation in the case of infinite cavity. J. Cryst. Growth 97(1), 226–234 (1989)

    Article  Google Scholar 

  33. Li, Y.R., Peng, L., Akiyama, Y., Imaishi, N.: Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. J. Cryst. Growth 259, 374–387 (2003)

    Article  Google Scholar 

  34. Li, Y.R., Peng, L., Shi, W.Y., Imaishi, N.: Convective instabilities in annular pools. Fluid Dyn. Mater. Process. 2(3), 153–166 (2006)

    MathSciNet  Google Scholar 

  35. Melnikov, D.E., Shevtsova, V.M., Legros, J.C.: Route to aperiodicity followed by high Prandtl-number liquid bridge. 1-g case. Acta Astronaut. 56(6), 601–611 (2005)

    Article  Google Scholar 

  36. Melnikov, D.E., Shevtsova, V.M., Legros, J.C.: Onset of temporal aperiodicity in high Prandtl number liquid bridge under terrestrial conditions. Phys. Fluids 16(5), 1746–1757 (2004)

    Article  MathSciNet  Google Scholar 

  37. Monberg E.: Bridgman and related growth techniques. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth, vol. 2, pp. 53–97. North-Holland, Amsterdam (1994)

    Google Scholar 

  38. Okada, K., Ozoe, H.: The Effect of Aspect ratio on The critical Grashof number for oscillatory natural convection of zero Prandtl number fluid: numerical approach. J. Cryst. Growth 126, 330–334 (1993)

    Article  Google Scholar 

  39. Peltier, L., Biringen, S.: Time-dependent thermocapillary convection in a rectangular cavity: numerical results for a moderate Prandtl number fluid. J. Fluid Mech. 257, 339–357 (1993)

    Article  Google Scholar 

  40. Priede, J., Gerbeth, G.: Influence of thermal boundary conditions on the stability of thermocapillary-driven convection at low Prandtl numbers. Phys. Fluids 9, 1621–1634 (1997)

    Article  Google Scholar 

  41. Quartapelle, L.: Numerical Solution of the Incompressible Navier-Stokes Equations, International Series of Numerical Mathematics, vol. 113. Birkäuser (1993)

    Book  Google Scholar 

  42. Schwabe, D., Moller, U., Schneider, J., Scharmann, A.: Instabilities of shallow dynamic thermocapillary liquid layers. Phys. Fluids A 4, 2368–2381 (1992)

    Article  Google Scholar 

  43. Schwabe, D., Zebib, A., Sim, B.C.: Oscillatory thermocapillary convection in open cylindrical annuli.Part 1.Experiments under microgravity. J. Fluid Mech. 491, 239–258 (2003)

    Article  Google Scholar 

  44. Shevtsova, V.M., Nepomnyashchy, A.A., Legros, J.C.: Thermocapillary-buoyancy convection in a shallow cavity heated from the side. Phys. Rev. E 67, 066308 (2003). 14 pages

    Article  Google Scholar 

  45. Shevtsova, V.M., et al.: Onset of hydrothermal instability in liquid bridge. Experimental benchmark. Fluid Dyn. Mater. Process 7(1), 1–28 (2011)

    MathSciNet  Google Scholar 

  46. Shi, W.Y., Imaishi, N.: Hydrothermal waves in differentially heated shallow annular pools of silicone oil. J. Cryst. Growth 290, 280–291 (2006)

    Article  Google Scholar 

  47. Smith, M.K.: Instability mechanism in dynamic thermocapillary liquid layers. Phys. Fluids 29(10), 3182–3186 (1986)

    Article  Google Scholar 

  48. Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1: convective instabilities. J. Fluid Mech. 132, 119–144 (1983)

    Article  Google Scholar 

  49. Squire, H.B.: On the stability of three-dimensional disturbances of viscous flow between parallel walls. Proc. R. Soc. Lond. Ser. A 142, 621–628 (1933)

    Article  Google Scholar 

  50. Tang, Z.M., Hu, W.R.: Hydrothermal wave in a shallow liquid layer. Microgravity Sci. Tech. 16(1), 253–258 (2005)

    Article  Google Scholar 

  51. Temam, R.: Uneméthoded’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98, 115–152 (1968)

    Article  Google Scholar 

  52. Tollmien, W.: General instability criterion of laminar velocity distributions. Tech. Memor. Nat. Adv. Comm. Aero., Wash. No. 792 (1936)

    Google Scholar 

  53. Ueno, I., Tanaka, S., Kawamura, H.: Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge. Phys. Fluids 15(2), 408–416 (2003)

    Article  Google Scholar 

  54. Wang, T.M., Korpela, S.A.: Longitudinal rolls in a shallow cavity heated from a side. Phys. Fluids A 32, 947–953 (1989)

    Article  Google Scholar 

  55. Xu, J., Zebib, A.: Oscillatory two- and three-dimensional thermocapillary convection. J. Fluid Mech. 364, 187–209 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Lappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lappa, M. (2019). A Mathematical and Numerical Framework for the Simulation of Oscillatory Buoyancy and Marangoni Convection in Rectangular Cavities with Variable Cross Section. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics