Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

Thermal convection in an electrically conducting fluid (for example, a liquid metal) in the presence of a static magnetic field is considered in this chapter. The focus is on the extreme states of the flow, in which both buoyancy and Lorentz forces are very strong. It is argued that the instabilities occurring in such flows are often of unique and counter-intuitive nature due to the action of the magnetic field, which suppresses conventional turbulence and gives preference to two-dimensional instability modes not appearing in more conventional convection systems. Tools of numerical analysis suitable for such flows are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdou, M.A., Team, T.A.: Exploring novel high power density concepts for attractive fusion systems. Fusion Eng. Des. 45, 145–167 (1999)

    Article  Google Scholar 

  2. Abdou, M., Morley, N.B., Smolentsev, S., Ying, A., Malang, S., Rowcliffe, A., Ulrickson, M.: Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng. Des. 100, 2–43 (2015)

    Article  Google Scholar 

  3. Batchelor, G.K., Nitsche, J.M.: Instability of stratified fluid in a vertical cylinder. J. Fluid Mech. 252, 419–448 (1993)

    Article  MathSciNet  Google Scholar 

  4. Boeck, T., Krasnov, D., Thess, A., Zikanov, O.: Large-scale intermittency of liquid-metal channel flow in a magnetic field. Phys. Rev. Lett. 101, 244,501 (2008)

    Google Scholar 

  5. Calzavarini, E., Doering, C.R., Gibbon, J.D., Lohse, D., Tanabe, A., Toschi, F.: Exponentially growing solutions of homogeneous Rayleigh-Bénard flow. Phys. Rev. E 73, R035,301 (2006)

    Google Scholar 

  6. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    Google Scholar 

  7. Cioni, S., Chaumat, S., Sommeria, J.: Effect of a vertical magnetic field on turbulent rayleigh-bénard convection. Phys. Rev. E 62(4), R4520 (2000)

    Article  Google Scholar 

  8. Davidson, P.A.: Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  9. Di Piazza, I., Ciofalo, M.: MHD free convection in a liquid-metal filled cubic enclosure. I. differential heating. Int. J. Heat Mass Trans. 45(7), 1477–1492 (2002)

    Google Scholar 

  10. Di Piazza, I., Ciofalo, M.: MHD free convection in a liquid-metal filled cubic enclosure. II. internal heating. Int. J. Heat Mass Trans. 45(7), 1493–1511 (2002)

    Google Scholar 

  11. Dolan, T.J., Moir, R.W., Manheimer, W., Cadwallader, L.C., Neumann, M.J.: Magnetic Fusion Technology. Springer, Berlin (2013)

    Google Scholar 

  12. Dong, S., Krasnov, D., Boeck, T.: Secondary energy growth and turbulence suppression in conducting channel flow with streamwise magnetic field. Phys. Fluids 24(7), 074,101 (2012)

    Article  Google Scholar 

  13. Evtikhin, V.A., Lyublinski, I.E., Vertkov, A.V., Yezhov, N.I., Khripunov, B.I., Sotnikov, S.M., Mirnov, S.V., Petrov, V.B.: Energy removal and MHD performance of lithium capillary-pore systems for divertor target application. Fusion Eng. Des. 49, 195–199 (2000)

    Article  Google Scholar 

  14. Genin, L.G., Zhilin, V.G., Ivochkin, Y.P., Razuvanov, N.G., Belyaev, I.A., Listratov, Y.I., Sviridov, V.G.: Temperature fluctuations in a heated horizontal tube affected by transverse magnetic field. In: Proceedings of 8th PAMIR Conference on Fundamental and Applied MHD, pp. 37–41. Borgo, Corsica, France (2011)

    Google Scholar 

  15. Gershuni, G.Z., Zhukhovitskii, E.M.: Convective Stability of Incompressible Fluids. Nauka, Moscow (1986)

    Google Scholar 

  16. Kelley, D.H., Sadoway, D.R.: Mixing in a liquid metal electrode. Phys. Fluids 26(5), 057,102 (2014)

    Article  Google Scholar 

  17. Kim, H., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jiang, K., Tomaszowska, A.A., Wang, K., Wei, W., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., Sadoway, D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113(3), 2075–2099 (2013)

    Article  Google Scholar 

  18. Kirillov, I.R., Obukhov, D.M., Genin, L.G., Sviridov, V.G., Razuvanov, N.G., Batenin, V.M., Belyaev, I.A., Poddubnyi, I.I., Pyatnitskaya, N.Y.: Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load. Fusion Eng. Des. 104, 1–8 (2016)

    Article  Google Scholar 

  19. Krasnov, D., Zikanov, O., Boeck, T.: Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comp. Fluids 50, 46–59 (2011)

    Article  MathSciNet  Google Scholar 

  20. Krasnov, D.S., Zikanov, O., Boeck, T.: Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421–446 (2012)

    Article  MathSciNet  Google Scholar 

  21. Liu, L., Zikanov, O.: Elevator mode convection in flows with strong magnetic fields. Phys. Fluids 27(4), 044,103 (2015)

    Article  Google Scholar 

  22. Mas de les Valls, E., Sedano, L., Batet, L., Ricapito, I., Aiello, A., Gastaldi, O., Gabriel, F.: Lead-lithium eutectic material database for nuclear fusion technology. J. Nucl. Mater. 376(3), 353–357 (2008)

    Google Scholar 

  23. Mas de les Valls, E., Batet, L., de Medina, V., Sedano, L.A.: MHD thermofluid flow simulation of channels with a uniform thermal load as applied to HCLL breeding blankets for fusion technology. Magnetohydrodynamics (0024-998X) 48(1) (2012)

    Google Scholar 

  24. Melnikov, I.A., Sviridov, E.V., Sviridov, V.G., Razuvanov, N.G.: Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field. Fusion Eng. Des. 112, 505–512 (2016)

    Article  Google Scholar 

  25. Moffatt, K.: On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 23, 571–592 (1967)

    Article  Google Scholar 

  26. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143, 90–124 (1998)

    Article  MathSciNet  Google Scholar 

  27. Müller, U., Bühler, L.: Magnetohydrodynamics in Channels and Containers. Springer, Berlin (2001)

    Book  Google Scholar 

  28. Ni, M.J., Munipalli, R., Huang, P., Morley, N.B., Abdou, M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comp. Phys. 227, 174–204 (2007)

    Article  MathSciNet  Google Scholar 

  29. Ozoe, H.: Magnetic Convection. Imperial College Press, London (2005)

    Book  Google Scholar 

  30. Ruzic, D. N., Xu, W., Andruczyk, D., Jaworski, M. A.: Lithium-metal infused trenches (LiMIT) for heat removal in fusion devices. Nucl. Fusion 51(10), 102,002 (2011)

    Article  Google Scholar 

  31. Schmidt, L.E., Calzavarini, E., Lohse, D., Toschi, F., Verzicco, R.: Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell. J. Fluid Mech. 691, 52–68 (2012)

    Article  MathSciNet  Google Scholar 

  32. Shen, Y., Zikanov, O.: Thermal convection in a liquid metal battery. Theor. Comp. Fluid Dyn. 30(4), 275–294 (2016)

    Article  Google Scholar 

  33. Sommeria, J., Moreau, R.: Why, how and when MHD-turbulence becomes two-dimensional. J. Fluid Mech. 118, 507–518 (1982)

    Article  Google Scholar 

  34. Stefani, F., Gundrum, T., Gerbeth, G.: Contactless inductive flow tomography. Phys. Rev. E 70, 056,306 (2004)

    Google Scholar 

  35. Thess, A., Zikanov, O.: Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383–412 (2007)

    Article  MathSciNet  Google Scholar 

  36. Thess, A., Votyakov, E., Knaepen, B., Zikanov, O.: Theory of the lorentz force flowmeter. New J. Phys. 9(8), 299 (2007)

    Article  Google Scholar 

  37. Vorobev, A., Zikanov, O., Davidson, P.A., Knaepen, B.: Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17(12), 125,105 (2005)

    Article  MathSciNet  Google Scholar 

  38. Weiss, N.O., Proctor, M.R.E.: Magnetoconvection. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  39. Zhang, X., Zikanov, O.: Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field. J. Fluid Mech. 757, 33–56 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Zikanov, O.: Two-dimensional turbulent convection in a toroidal duct of a liquid metal blanket of a fusion reactor. J. Fluid Mech. 779, 36–52 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhang, X., Zikanov, O.: Thermal convection in a duct with strong axial magnetic field. Magnetohydrodynamics 53(1) (2017)

    Google Scholar 

  42. Zhang, X., Zikanov, O.: Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field. Fusion Eng. Des. 116, 52–60 (2017)

    Article  Google Scholar 

  43. Zhang, X., Zikanov, O.: Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow. Fusion Eng. Des. 116, 40–46 (2017)

    Article  Google Scholar 

  44. Zhao, Y., Tao, J., Zikanov, O.: Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow. Phys. Rev. E 89, 033,002 (2014)

    Google Scholar 

  45. Zikanov, O., Listratov, Y.: Numerical investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field. Fusion Eng. Des. 113, 151–161 (2016)

    Article  Google Scholar 

  46. Zikanov, O., Thess, A.: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299–333 (1998)

    Article  Google Scholar 

  47. Zikanov, O., Thess, A.: Direct numerical simulation as a tool for understanding MHD liquid metal turbulence. Appl. Math. Mod. 28(1), 1–13 (2004)

    Article  Google Scholar 

  48. Zikanov, O., Listratov, Y., Sviridov, V.G.: Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486–516 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dmitry Krasnov for the continuing support of the computational tools used for the simulations presented in this paper. The work was supported by the US NSF (Grants CBET 1232851 and 1435269) and by the Ministry of Education and Science of the Russian Federation (Project No. 13.9619.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zikanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zikanov, O., Listratov, Y., Zhang, X., Sviridov, V. (2019). Instabilities in Extreme Magnetoconvection. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics