Skip to main content

Abstract

Top-k queries represent a vigorous tool to rank-order answers and return only the most interesting ones. ETop-k queries were introduced to discriminate answers in the context of evidential databases. Due to their interval degrees, such answers seem to be difficult to rank-order and to interpret. Two methods of ranking intervals were proposed in the evidential context. This paper presents an efficient implementation of these methods and discusses the experimental results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bel and Pl are two functions defined in the object-relational implementation of evidential databases in [5].

References

  1. Bell, D.A., Guan, J.W., Lee, S.K.: Generalized union and project operations for pooling uncertain and imprecise information. Data Knowl. Eng. (DKE) 18, 89–117 (1996)

    Article  Google Scholar 

  2. Yaghlane, A.B., Denœux, T., Mellouli, K.: Elicitation of expert opinions for constructing belief functions. In: Uncertainty and Intelligent, Information Systems, pp. 75–88 (2008)

    Chapter  Google Scholar 

  3. Bousnina, F.E., Bach Tobji, M.A., Chebbah, M., Liétard, L., Ben Yaghlane, B.: A new formalism for evidential databases. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 31–40. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25252-0_4

    Chapter  Google Scholar 

  4. Bousnina, F.E., Chebbah, M., Bach Tobji, M.A., Hadjali, A., Ben Yaghlane, B.: On top-k queries over evidential data. In: 19th International Conference on Enterprise Information Systems (ICEIS), Porto, Portugal, vol. 1, pp. 106–113 (2017)

    Google Scholar 

  5. Bousnina F., Chebbah M., Bach Tobji M., Hadjali A. and Ben Yaghlane B.: Object-relational implementation of evidential databases. In: 1st International Conference on Digital Economy (ICDEc), La Marsa, Tunisia, pp. 80–87 (2016)

    Google Scholar 

  6. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Proceedings of the 13th VLDB Conference, Brighton, UK, pp. 71–81 (1987)

    Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multiple valued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  Google Scholar 

  8. Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 30, 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Elmi, S., Benouaret, K., Hadjali, A., Bach Tobji, M.A., Ben Yaghlane, B.: Computing skyline from evidential data. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 148–161. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_13

    Chapter  Google Scholar 

  10. Elmi, S., Benouaret, K., HadjAli, A., Bach Tobji, M.A., Ben Yaghlane, B.: Requêtes skyline en présence des données évidentielles. In: Extraction et Gestion des Connaissances (EGC), pp. 215–220 (2015)

    Google Scholar 

  11. Ennaceur, A., Elouedi, Z., Lefevre, E.: Multi-criteria decision making method with belief preference relations. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22(04), 573–590 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fagin, R.: Combining fuzzy information from multiple systems. In: 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Montreal, Canada, pp. 216–226. ACM (1996)

    Google Scholar 

  13. Fagin, R.: Fuzzy queries in multimedia database systems. In: 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Seattle, WA, USA, pp. 1–10. ACM (1998)

    Google Scholar 

  14. Lee, S.K.: An extended relational database model for uncertain and imprecise information. In: 18th Conference on Very Large Data Bases (VLDB), Canada, pp. 211–220 (1992)

    Google Scholar 

  15. Lee, S.K.: Imprecise and uncertain information in databases: an evidential approach. In: 8th International Conference on Data Engineering (ICDE), Arizona, USA, pp. 614–621 (1992)

    Google Scholar 

  16. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Inf. Sci. 34(2), 115–143 (1984)

    Article  MathSciNet  Google Scholar 

  17. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  18. Wang, Y.-M., Yang, J.-B., Dong-Ling, X.: A preference aggregation method through the estimation of utility intervals. Comput. Oper. Res. 32(8), 2027–2049 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ezzahra Bousnina .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proof

*Complementarity:

$$\begin{aligned} P(S(R_i) < S(R_j))&= \dfrac{max(0,pl_j - bel_i)- max(0,bel_j - pl_i)}{(pl_i - bel_i) + (pl_j - bel_j)} \end{aligned}$$
$$\begin{aligned} P(S(R_j) < S(R_i))&= \dfrac{max(0,pl_i - bel_j)- max(0,bel_i - pl_j)}{(pl_i - bel_i) + (pl_j - bel_j)} \end{aligned}$$

\(P(S(R_i)< S(R_j))+ P(S(R_j) < S(R_i))\)

$$\begin{aligned}&= \dfrac{max(0,pl_j - bel_i)- max(0,bel_j - pl_i)}{(pl_i - bel_i) + (pl_j - bel_j)}\\&+ \dfrac{max(0,pl_i - bel_j)- max(0,bel_i - pl_j)}{(pl_i - bel_i) + (pl_j - bel_j)}\\&= \dfrac{max(0,pl_j - bel_i)- 0 + max(0,pl_i - bel_j)- 0}{(pl_i - bel_i) + (pl_j - bel_j)}\\&= \dfrac{ pl_j - bel_i + pl_i - bel_j }{ pl_i - bel_i + pl_j - bel_j} = 1 \end{aligned}$$

\(P(S(R_i)< S(R_j))+ P(S(R_j) < S(R_i)) = 1 \)

Property 1

**Transitivity

Let \(S(R_i) = [bel_i;pl_i] \), \(S(R_j) = [bel_j;pl_j]\) and \(S(R_k)= [bel_k;pl_k]\) be three intervals. If \(S(R_i) \succ S(R_j)\) and \( S(R_j) \succ S(R_k)\) then \(S(R_i) \succ S(R_k)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bousnina, F.E., Chebbah, M., Bach Tobji, M.A., Hadjali, A., Ben Yaghlane, B. (2018). Evidential Top-k Queries Evaluation: Algorithms and Experiments. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91473-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91472-5

  • Online ISBN: 978-3-319-91473-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics