Skip to main content

Hidden Asymmetry in Shape of Biological Patterns

  • Conference paper
  • First Online:
Cybernetics and Algorithms in Intelligent Systems (CSOC2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 765))

Included in the following conference series:

  • 735 Accesses

Abstract

Various bilaterally symmetrical traits have not the same variability in the magnitude of the fluctuating asymmetry. Directional asymmetry (DA) is the second type of asymmetry with a clear predominance of either right or left structures. Since the FA is a considered indicator of instability, traits with DA are not used in the integral environmental monitoring. In presented paper the geometric morphometrics method is considered. This takes into account the labels that are placed on the bilaterally symmetric structures. The centroid points of consensus figure are drawn by the averaging of landmarks in Cartesian coordinates and the value of the FA shape of lamina is evaluated. In present study the MorphoJ1.06d package was used. The sampling procedure resulted in a nested dataset design. The increase in the accuracy of the measurement indicated a large fraction of the directional asymmetry. 90% of population studied possessed this type asymmetry. 10% of samples were characterized by clear fluctuating asymmetry. The results conclude the importance fine compute approach to testing of stability of development in natural biosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer, A.R., Strobeck, C.: Fluctuating asymmetry analyses revisited. In: Polak, M. (ed.) Developmental Instability: Causes and Consequences, pp. 279–319. Oxford University Press, New York (2003)

    Google Scholar 

  2. Graham, J.H., Raz, S., Hel-Or, H., Nevo, E.: Fluctuating asymmetry: methods, theory, and applications. Symmetry 2, 466–540 (2010)

    Article  MathSciNet  Google Scholar 

  3. Tikhodeyev, O.N.: Classification of variability forms based on phenotype determining factors: traditional views and their revision. Ecol. Genet. 11(3), 79–92 (2013). https://doi.org/10.17816/ecogen11379-92

    Article  Google Scholar 

  4. Viscosi, V., Cardini, A.: Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS ONE 6(10), e25630 (2011). https://doi.org/10.1371/journal.pone.0025630

    Article  Google Scholar 

  5. Savriama, Y., Gómez, J.M., Perfectti, F., Klingenberg, C.P.: Geometric morphometrics of corolla shape: dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytol. 196, 945–954 (2012)

    Article  Google Scholar 

  6. Graham, J.H., Emlen, J.M., Freeman, D.C., Leamy, L.J., Kieser, J.: Directional asymmetry and the measurement of developmental instability. Biol. J. Linn. Soc. 64, 1–16 (1998)

    Article  Google Scholar 

  7. Van Dongen, S., Lens, L., Molenberghs, G.: Mixture analysis of asymmetry: modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecol. Lett. 2, 387–396 (1999)

    Article  Google Scholar 

  8. Savriama, Y., Klingenberg, C.P.: Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evol. Biol. 11, 280 (2011)

    Article  Google Scholar 

  9. Rohlf, F.J.: Shape statistics: procrustes superimpositions and tangent spaces. J. Classif. 16, 197–223 (1999)

    Article  MATH  Google Scholar 

  10. Mardia, K.V., Bookstein, F.L., Moreton, I.J.: Statistical assessment of bilateral symmetry of shapes. Biometrika 87(2), 285–300 (2000). https://doi.org/10.1093/biomet/87.2.285

    Article  MathSciNet  MATH  Google Scholar 

  11. Klingenberg, C.P., Barluenga, M., Meyer, A.: Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920 (2002)

    Article  Google Scholar 

  12. Leamy, L.J., Routman, E.J., Cheverud, J.M.: An epistatic genetic basis for fluctuating asymmetry of mandible size in mice. Evolution 56(3), 642–653 (2002)

    Article  Google Scholar 

  13. Hochwender, C.G., Robert, S.: Fritz. Fluctuating asymmetry in a Salix hybrid system: the importance of genetic versus environmental causes. Evolution 53(2), 408–416 (1999)

    Article  Google Scholar 

  14. Leamy, L.J., Klingenberg, C.P.: The genetics and evolution of fluctuating asymmetry. Annu. Rev. Ecol. Evol. Syst. 36, 1–21 (2005)

    Article  Google Scholar 

  15. Zorina, A.A., Korosov, A.V.: Variability of asymmetry measures and indexes of leaf characters in the crown of Betula pendula (Betulaceae). Botanicheskiĭ Zhurnal 94(8), 1172–1192 (2009)

    Google Scholar 

  16. Baranov, S.G.: Geometric morphometric methods for Testing Developmental Stability of Betula pendula Roth. Biol. Bull. 5, 567–572 (2017)

    Google Scholar 

  17. Baranov, S.G.: Fenogenetic aspect of asymmetry of leaf blade Betula pendula Roth. Nauchnye vedomosti BelGU. Seriya: Estestvennye nauki 11(232), 10–17 (2016)

    Google Scholar 

  18. Vasilyev, A.G., Vasilyeva, I.A., Bol’shakov, V.N.: Evolutionary-ecological analysis of trends in phenogenetic variation of homologous morphological structures: from populations to ecological series of species. Russ. J. Ecol. 41(5), 365–371 (2010)

    Article  Google Scholar 

  19. Stige, L.C., David, B., Alibert, P.: On hidden heterogeneity in directional asymmetry – can systematic bias be avoided? J. Evol. Biol. 19, 492–499 (2006). https://doi.org/10.1111/j.1420-9101.2005.01011.x

    Article  Google Scholar 

  20. Fair, J.M., Breshears, D.D.: Drought stress and fluctuating asymmetry in Quercus undulata leaves: confounding effects of absolute and relative amounts of stress? J. Arid. Enviro. 62(2), 235–249 (2005)

    Article  Google Scholar 

  21. Fei, X., Weihua, G., Weihong, X., Renqing, W.: Habitat effects on leaf morphological plasticity in Quercus acutissima. Acta Biologica Cracoviensia Series Botanica 50(2), 19–26 (2008)

    Google Scholar 

  22. Kozlov, M.V.: Plant studies on fluctuating asymmetry in Russia: mythology and methodology. Russ. J. Ecol. 48, 1 (2017). https://doi.org/10.1134/S1067413617010106

    Article  Google Scholar 

  23. Bol’shakov, V.N., Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Y.V., Chibiryak, M.V.: Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals. Russ. J. Ecol. 46(4), 339–344 (2015)

    Article  Google Scholar 

  24. Voita, L.L., Omelko, V.E., Petroava, E.A.: Analysis of the morphometrics variability and intraspecific structure of Sorex Minutissimus Zimmermann 1780 (Lipotyphla: Soricidae) in Russia. Acta Theriol. 8, 167–179 (2013). https://doi.org/10.4098/at.arch.64-10

    Article  Google Scholar 

  25. Erofeeva, E.A.: Hormesis and paradoxical effects of Drooping Birch (Betula pendula Roth) parameters under motor traffic pollution. Dose-Response 13(2), 1559325815588508 (2015). https://doi.org/10.1177/1559325815588508

    Article  Google Scholar 

  26. Koroteeva, E.V., Veselkin, D.V., Kuyantseva, N.B., Chashchina, O.E.: The size, but not the fluctuating asymmetry of the leaf, of silver birch changes under the gradient influence of emissions of the Karabash Copper Smelter Plant. Dokl. Biol. Sci. 460, 36–39 (2015). Springer

    Article  Google Scholar 

  27. Kozlov, M.V., Cornelissen, T., Gavrikov, D.E., Kunavin, M.A., Lamma, A.D., Milligan, J.R., Zverev, V., Zvereva, E.L.: Reproducibility of fluctuating asymmetry measurements in plants: sources of variation and implications for study design. Ecol. Indic. 73, 733–740 (2017)

    Article  Google Scholar 

  28. Dongen, V.S.: Variation in measurement error in asymmetry studies: a new model, simulations and application. Symmetry 7(2), 284–293 (2015)

    Article  Google Scholar 

  29. Kryazheva, N.G., Chistyakova, E.K., Zakharov, V.M.: Analysis of development stability of Betula pendula under conditions of chemical pollution. Russ. J. Ecol. 27(6), 422–424 (1996)

    Google Scholar 

  30. Ivanov, V.P., Ivanov, Y.V., Marchenko, S.I., Kuznetsov, V.V.: Application of fluctuating asymmetry indexes of silver birch leaves for diagnostics of plant communities under technogenic pollution. Russ. J. Plant Physiol. 62(3), 340–348 (2015)

    Article  Google Scholar 

  31. Gelashvili, D.B., Cheprunov, E.V., Iudin, D.I.: Structural and bioindicative aspects of fluctuated asymmetry of bilateral organisms. Zhurnal obshchei biologii 65(5), 433–441 (2003)

    Google Scholar 

  32. Rohlf, F.J.: Tps Series. Department of Ecology and Evolution, State University of New York, Stony Brook, New York (2010). http://life.bio.sunysb.edu/morph/. Accessed 8 June 2011

  33. Rohlf, F.J.: The tps series of software. Hystrix (Ital. J. Mammal.) 26(1), 9–12 (2015)

    Google Scholar 

  34. Klingenberg, C.P.: MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011). https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  Google Scholar 

  35. Pavlinov, L.Y., Mikeshina, N.G.: Principles and methods of geometric morphometrics. Russ. J. Ecol. 3(6), 473–493 (2002)

    Google Scholar 

  36. Klingenberg, C.P.: Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry, 7843–934 (2015). https://doi.org/10.3390/sym7020843

    Article  MathSciNet  Google Scholar 

  37. Breuker, C.J., Patterson, J.S., Klingenberg, C.P.: A single basis for developmental buffering of Drosophila wing shape. PLoS ONE 1(1), e7 (2006)

    Article  Google Scholar 

  38. Hagen, S.B., Ims, R.A., Yoccoz, N.G., Sørlibråten, O.: Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens). Plant Ecol. 195(2), 157–163 (2008)

    Article  Google Scholar 

  39. Vasil’ev, A.G., Vasil’eva, I.A., Marin, Y.F.: Phenogenetic monitoring of the weeping birch (Betula pendula Roth.) in the Middle Urals: testing a new method for assessing developmental instability in higher plants. Russ. J. Ecol. 39(7), 483–489 (2008)

    Article  Google Scholar 

  40. Franiel, I.: Fluctuating asymmetry of Betula pendula Roth. leaves – an index of environment quality. Biodiv. Res. Conserv. 9–10, 7–10 (2008)

    Google Scholar 

  41. Van Dongen, S.: Unbiased estimation of individual asymmetry. J. Evol. Biol. 13(1), 107–112 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baranov, S.G. (2019). Hidden Asymmetry in Shape of Biological Patterns. In: Silhavy, R. (eds) Cybernetics and Algorithms in Intelligent Systems . CSOC2018 2018. Advances in Intelligent Systems and Computing, vol 765. Springer, Cham. https://doi.org/10.1007/978-3-319-91192-2_20

Download citation

Publish with us

Policies and ethics