Skip to main content

Gaps and Future Directions in Lung Transplantation

  • Chapter
  • First Online:
Lung Transplantation
  • 838 Accesses

Abstract

Lung transplantation (LTX) may be the only intervention that can improve quality of life for individuals with advanced lung disease and can prolong survival in advanced lung diseases such as idiopathic pulmonary fibrosis or cystic fibrosis that progress despite non-transplant therapies. However, some patients considered for lung transplantation are extremely ill and require ventilator and/or circulatory support as a bridge to transplant. Indeed, many early complications can threaten lung allograft viability, and delayed onset of decline in function due to chronic lung allograft dysfunction (CLAD) or other posttransplant complications such as opportunistic infection significantly impact recipient survival and long-term outcomes. Many advances in pre- and posttransplant management have led to improved outcomes over the past decade. These include the creation of sound guidelines for candidate selection, improved surgical techniques, improved methods for donor lung preservation, advances in the suppression and treatment of allograft rejection, the development of prophylaxis protocols to decrease the risk of opportunistic infection, more effective therapies for treating infectious complications, and the development of a clinical practice guideline to treat and manage CLAD. Nonetheless, many gaps in knowledge concerning the optimization of the initial transplant procedure, perioperative management, and the prevention of subacute and chronic allograft dysfunction persist. This chapter discusses evolving advances in the field of lung transplantation, identifies persistent gaps in knowledge, and discusses what the future may hold for lung transplantation as a more attractive and viable option for patients confronted with premature death due to end-stage lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotloff RM, Thabut G. Lung transplantation. Am J Respir Crit Care Med. 2011;184(2):159–71.

    Article  PubMed  Google Scholar 

  2. Spahr J, Meyer K. Lung transplantation. In: Hricik D, editor. Primer on transplantation. American Society of Transplantation. 3rd ed. Oxford: Wiley-Blackwell; 2011. p. 205–37.

    Chapter  Google Scholar 

  3. Eberlein M, Garrity ER, Orens JB. Lung allocation in the United States. Clin Chest Med. 2011;32(2):213–22.

    Article  PubMed  Google Scholar 

  4. Russo MJ, Iribarne A, Hong KN, et al. High lung allocation score is associated with increased morbidity and mortality following transplantation. Chest. 2010;137(3):651–7.

    Article  PubMed  Google Scholar 

  5. Merlo CA, Weiss ES, Orens JB, et al. Impact of U.S. Lung Allocation Score on survival after lung transplantation. J Heart Lung Transplant. 2009;28(8):769–75.

    Article  PubMed  Google Scholar 

  6. Weiss ES, Allen JG, Merlo CA, Conte JV, Shah AS. Lung allocation score predicts survival in lung transplantation patients with pulmonary fibrosis. Ann Thorac Surg. 2009;88(6):1757–64.

    Article  PubMed  Google Scholar 

  7. George TJ, Beaty CA, Kilic A, Shah PD, Merlo CA, Shah AS. Outcomes and temporal trends among high-risk patients after lung transplantation in the United States. J Heart Lung Transplant. 2012;31(11):1182–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vock DM, Durheim MT, Tsuang WM, et al. Survival benefit of lung transplantation in the modern era of lung allocation. Ann Am Thorac Soc. 2017;14(2):172–81.

    PubMed  PubMed Central  Google Scholar 

  9. De Oliveira NC, Julliard W, Osaki S, et al. Lung transplantation for high-risk patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2016;33(3):235–41.

    PubMed  Google Scholar 

  10. Russo MJ, Davies RR, Hong KN, et al. Who is the high-risk recipient? Predicting mortality after lung transplantation using pretransplant risk factors. J Thorac Cardiovasc Surg. 2009;138(5):1234–1238.e1.

    Article  PubMed  Google Scholar 

  11. Gries CJ, Rue TC, Heagerty PJ, Edelman JD, Mulligan MS, Goss CH. Development of a predictive model for long-term survival after lung transplantation and implications for the lung allocation score. J Heart Lung Transplant. 2010;29(7):731–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hook JL, Lederer DJ. Selecting lung transplant candidates: where do current guidelines fall short? Expert Rev Respir Med. 2012;6(1):51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weill D, Benden C, Corris PA, et al. A consensus document for the selection of lung transplant candidates: 2014—an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2015;34(1):1–15.

    Article  PubMed  Google Scholar 

  14. Lang G, Taghavi S, Aigner C, et al. Primary lung transplantation after bridge with extracorporeal membrane oxygenation: a plea for a shift in our paradigms for indications. Transplantation. 2012;93(7):729–36.

    Article  PubMed  Google Scholar 

  15. Javidfar J, Bacchetta M. Bridge to lung transplantation with extracorporeal membrane oxygenation support. Curr Opin Organ Transplant. 2012;17(5):496–502.

    Article  PubMed  CAS  Google Scholar 

  16. Mason DP, Thuita L, Nowicki ER, Murthy SC, Pettersson GB, Blackstone EH. Should lung transplantation be performed for patients on mechanical respiratory support? The US experience. J Thorac Cardiovasc Surg. 2010;139(3):765–73.

    Article  PubMed  Google Scholar 

  17. Gottlieb J, Warnecke G, Hadem J, et al. Outcome of critically ill lung transplant candidates on invasive respiratory support. Intensive Care Med. 2012;38(6):968–75.

    Article  PubMed  Google Scholar 

  18. Bittner HB, Lehmann S, Rastan A, et al. Outcome of extracorporeal membrane oxygenation as a bridge to lung transplantation and graft recovery. Ann Thorac Surg. 2012;94(3):942–9.

    Article  PubMed  Google Scholar 

  19. Nosotti M, Rosso L, Tosi D, et al. Extracorporeal membrane oxygenation with spontaneous breathing as a bridge to lung transplantation. Interact Cardiovasc Thorac Surg. 2013;16(1):55–9.

    Article  PubMed  Google Scholar 

  20. Ius F, Kuehn C, Tudorache I, et al. Lung transplantation on cardiopulmonary support: venoarterial extracorporeal membrane oxygenation outperformed cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;144(6):1510–6.

    Article  PubMed  Google Scholar 

  21. Shafii AE, Mason DP, Brown CR, et al. Growing experience with extracorporeal membrane oxygenation as a bridge to lung transplantation. ASAIO J. 2012;58(5):526–9.

    Article  PubMed  CAS  Google Scholar 

  22. Javidfar J, Brodie D, Iribarne A, et al. Extracorporeal membrane oxygenation as a bridge to lung transplantation and recovery. J Thorac Cardiovasc Surg. 2012;144(3):716–21.

    Article  PubMed  Google Scholar 

  23. Garcia JP, Iacono A, Kon ZN, Griffith BP. Ambulatory extracorporeal membrane oxygenation: a new approach for bridge-to-lung transplantation. J Thorac Cardiovasc Surg. 2010;139(6):e137–9.

    Article  PubMed  Google Scholar 

  24. Shafii AE, McCurry KR. Subclavian insertion of the bicaval dual lumen cannula for venovenous extracorporeal membrane oxygenation. Ann Thorac Surg. 2012;94(2):663–5.

    Article  PubMed  Google Scholar 

  25. Mangi AA, Mason DP, Yun JJ, Murthy SC, Pettersson GB. Bridge to lung transplantation using short-term ambulatory extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 2010;140(3):713–5.

    Article  PubMed  Google Scholar 

  26. Lowman JD, Kirk TK, Clark DE. Physical therapy management of a patient on portable extracorporeal membrane oxygenation as a bridge to lung transplantation: a case report. Cardiopulm Phys Ther J. 2012;23(1):30–5.

    PubMed  PubMed Central  Google Scholar 

  27. Garcia JP, Kon ZN, Evans C, et al. Ambulatory veno-venous extracorporeal membrane oxygenation: innovation and pitfalls. J Thorac Cardiovasc Surg. 2011;142(4):755–61.

    Article  PubMed  Google Scholar 

  28. Ricci D, Boffini M, Del Sorbo L, et al. The use of CO2 removal devices in patients awaiting lung transplantation: an initial experience. Transplant Proc. 2010;42(4):1255–8.

    Article  PubMed  CAS  Google Scholar 

  29. Camboni D, Philipp A, Hirt S, Schmid C. Possibilities and limitations of a miniaturized long-term extracorporeal life support system as bridge to transplantation in a case with biventricular heart failure. Interact Cardiovasc Thorac Surg. 2009;8(1):168–70.

    Article  PubMed  Google Scholar 

  30. Taylor K, Holtby H. Emergency interventional lung assist for pulmonary hypertension. Anesth Analg. 2009;109(2):382–5.

    Article  PubMed  Google Scholar 

  31. Camboni D, Philipp A, Haneya A, et al. Serial use of an interventional lung assist device and a ventricular assist device. ASAIO J. 2010;56(3):270–2.

    Article  PubMed  Google Scholar 

  32. Mason DP, Thuita L, Alster JM, et al. Should lung transplantation be performed using donation after cardiac death? The United States experience. J Thorac Cardiovasc Surg. 2008;136(4):1061–6.

    Article  PubMed  Google Scholar 

  33. De Oliveira NC, Osaki S, Maloney JD, et al. Lung transplantation with donation after cardiac death donors: long-term follow-up in a single center. J Thorac Cardiovasc Surg. 2010;139(5):1306–15.

    Article  PubMed  Google Scholar 

  34. Cypel M, Yeung JC, Hirayama S, et al. Technique for prolonged normothermic ex vivo lung perfusion. J Heart Lung Transplant. 2008;27(12):1319–25.

    Article  PubMed  Google Scholar 

  35. Wierup P, Haraldsson A, Nilsson F, et al. Ex vivo evaluation of nonacceptable donor lungs. Ann Thorac Surg. 2006;81(2):460–6.

    Article  PubMed  Google Scholar 

  36. Cypel M, Rubacha M, Yeung J, et al. Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. Am J Transplant. 2009;9(10):2262–9.

    Article  PubMed  CAS  Google Scholar 

  37. Ingemansson R, Eyjolfsson A, Mared L, et al. Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. Ann Thorac Surg. 2009;87(1):255–60.

    Article  PubMed  Google Scholar 

  38. Yeung JC, Cypel M, Waddell TK, van Raemdonck D, Keshavjee S. Update on donor assessment, resuscitation, and acceptance criteria, including novel techniques—non-heart-beating donor lung retrieval and ex vivo donor lung perfusion. Thorac Surg Clin. 2009;19(2):261–74.

    Article  PubMed  Google Scholar 

  39. Cypel M, Yeung JC, Keshavjee S. Novel approaches to expanding the lung donor pool: donation after cardiac death and ex vivo conditioning. Clin Chest Med. 2011;32(2):233–44.

    Article  PubMed  Google Scholar 

  40. Cypel M, Keshavjee S. Extracorporeal lung perfusion. Curr Opin Organ Transplant. 2011;16(5):469–75.

    Article  PubMed  Google Scholar 

  41. Zych B, Popov AF, Stavri G, et al. Early outcomes of bilateral sequential single lung transplantation after ex-vivo lung evaluation and reconditioning. J Heart Lung Transplant. 2012;31(3):274–81.

    Article  PubMed  Google Scholar 

  42. Sadaria MR, Smith PD, Fullerton DA, et al. Cytokine expression profile in human lungs undergoing normothermic ex-vivo lung perfusion. Ann Thorac Surg. 2011;92(2):478–84.

    Article  PubMed  Google Scholar 

  43. Aigner C, Slama A, Hötzenecker K, et al. Clinical ex vivo lung perfusion—pushing the limits. Am J Transplant. 2012;12(7):1839–47.

    Article  PubMed  CAS  Google Scholar 

  44. Mordant P, Nakajima D, Kalaf R, et al. Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. J Heart Lung Transplant. 2016;35(10):1245–54.

    Article  PubMed  Google Scholar 

  45. Machuca TN, Cypel M, Bonato R, et al. Safety and efficacy of ex vivo donor lung adenoviral IL-10 gene therapy in a large animal lung transplant survival model. Hum Gene Ther. 2017;28(9):757–65.

    Article  PubMed  CAS  Google Scholar 

  46. Nakajima D, Cypel M, Bonato R, et al. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant. 2016;16(4):1229–37.

    Article  PubMed  CAS  Google Scholar 

  47. Nakajima D, Liu M, Ohsumi A, et al. Lung lavage and surfactant replacement during ex vivo lung perfusion for treatment of gastric acid aspiration-induced donor lung injury. J Heart Lung Transplant. 2017;36(5):577–85.

    Article  PubMed  Google Scholar 

  48. Hsin MK, Zamel R, Cypel M, et al. Metabolic profile of ex vivo lung perfusate yields biomarkers for lung transplant outcomes. Ann Surg. 2018;267(1):196–7.

    Article  PubMed  Google Scholar 

  49. Hashimoto K, Cypel M, Juvet S, et al. Higher M30 and high mobility group box 1 protein levels in ex vivo lung perfusate are associated with primary graft dysfunction after human lung transplantation. J Heart Lung Transplant. 2017. pii: S1053-2498(17)31870-3 (Epub ahead of print).

    Google Scholar 

  50. Cypel M, Keshavjee S. Extracorporeal lung perfusion (ex-vivo lung perfusion). Curr Opin Organ Transplant. 2016;21(3):329–35.

    Article  PubMed  CAS  Google Scholar 

  51. Yeung JC, Cypel M, Keshavjee S. Ex-vivo lung perfusion: the model for the organ reconditioning hub. Curr Opin Organ Transplant. 2017;22(3):287–9.

    Article  PubMed  Google Scholar 

  52. Yeung JC, Krueger T, Yasufuku K, et al. Outcomes after transplantation of lungs preserved for more than 12 h: a retrospective study. Lancet Respir Med. 2017;5(2):119–24.

    Article  PubMed  Google Scholar 

  53. Hsin MK, Iskender I, Nakajima D, et al. Extension of donor lung preservation with hypothermic storage after normothermic ex vivo lung perfusion. J Heart Lung Transplant. 2016;35(1):130–6.

    Article  PubMed  Google Scholar 

  54. Reeb J, Keshavjee S, Cypel M. Expanding the lung donor pool: advancements and emerging pathways. Curr Opin Organ Transplant. 2015;20(5):498–505.

    Article  PubMed  Google Scholar 

  55. Benden C, Goldfarb SB, Edwards LB, et al. The registry of the International Society for Heart and Lung Transplantation: seventeenth official pediatric lung and heart-lung transplantation report—2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33(10):1025–33.

    Article  PubMed  Google Scholar 

  56. Thabut G, Christie JD, Ravaud P, et al. Survival after bilateral versus single-lung transplantation for idiopathic pulmonary fibrosis. Ann Intern Med. 2009;151(11):767–74.

    Article  PubMed  Google Scholar 

  57. Schaffer JM, Singh SK, Reitz BA, Zamanian RT, Mallidi HR. Single- vs double-lung transplantation in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis since the implementation of lung allocation based on medical need. JAMA. 2015;313(9):936–48.

    Article  PubMed  CAS  Google Scholar 

  58. Mason DP, Brizzio ME, Alster JM, et al. Lung transplantation for idiopathic pulmonary fibrosis. Ann Thorac Surg. 2007;84(4):1121–8.

    Article  PubMed  Google Scholar 

  59. Gulack BC, Ganapathi AM, Speicher PJ, et al. What is the optimal transplant for older patients with idiopathic pulmonary fibrosis? Ann Thorac Surg. 2015;100(5):1826–33.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Force SD, Kilgo P, Neujahr DC, et al. Bilateral lung transplantation offers better long-term survival, compared with single-lung transplantation, for younger patients with idiopathic pulmonary fibrosis. Ann Thorac Surg. 2011;91(1):244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Oliveira NC, Osaki S, Maloney J, Cornwell RD, Meyer KC, et al. Lung transplant for interstitial lung disease: outcomes for single versus bilateral lung transplantation. Interact Cardiovasc Thorac Surg. 2012;14(3):263–7.

    Article  PubMed  Google Scholar 

  62. Nathan SD, Shlobin OA, Ahmad S, Burton NA, Barnett SD, Edwards E. Comparison of wait times and mortality for idiopathic pulmonary fibrosis patients listed for single or bilateral lung transplantation. J Heart Lung Transplant. 2010;29(10):1165–71.

    Article  PubMed  Google Scholar 

  63. Julliard WA, Meyer KC, De Oliveira NC, et al. The presence or severity of pulmonary hypertension does not affect outcomes for single-lung transplantation. Thorax. 2016;71(5):478–80.

    Article  PubMed  Google Scholar 

  64. Kotton CN, Kumar D, Caliendo AM, et al. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89(7):779–95.

    Article  PubMed  Google Scholar 

  65. Hodson EM, Craig JC, Strippoli GF, Webster AC. Antiviral medications for preventing cytomegalovirus disease in solid organ transplant recipients. Cochrane Database Syst Rev. 2008;(2):CD003774.

    Google Scholar 

  66. Palmer SM, Limaye AP, Banks M, et al. Extended valganciclovir prophylaxis to prevent cytomegalovirus after lung transplantation: a randomized, controlled trial. Ann Intern Med. 2010;152(12):761–9.

    Article  PubMed  Google Scholar 

  67. Murphey CL, Forsthuber TG. Trends in HLA antibody screening and identification and their role in transplantation. Expert Rev Clin Immunol. 2008;4(3):391–9.

    Article  PubMed  CAS  Google Scholar 

  68. Tait BD, Hudson F, Cantwell L, et al. Review article: Luminex technology for HLA antibody detection in organ transplantation. Nephrology (Carlton). 2009;14(2):247–54.

    Article  CAS  Google Scholar 

  69. Tinckam KJ, Keshavjee S, Chaparro C, et al. Survival in sensitized lung transplant recipients with perioperative desensitization. Am J Transplant. 2015;15(2):417–26.

    Article  PubMed  CAS  Google Scholar 

  70. Zangwill SD, Ellis TM, Zlotocha J, et al. The virtual crossmatch—a screening tool for sensitized pediatric heart transplant recipients. Pediatr Transplant. 2006;10:38.

    Article  PubMed  CAS  Google Scholar 

  71. Tambur AR, Ramon DS, Kaufman DB, et al. Perception versus reality? Virtual crossmatch—how to overcome some of the technical and logistic limitations. Am J Transplant. 2009;9:1886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cecka JM, Kucheryavaya AY, Reinsmoen NL, Leffell MS. Calculated PRA: initial results show benefits for sensitized patients and a reduction in positive crossmatches. Am J Transplant. 2011;11:719.

    Article  PubMed  CAS  Google Scholar 

  73. El-Awar N, Lee J, Terasaki PI. HLA antibody identification with single antigen beads compared to conventional methods. Hum Immunol. 2005;66:989.

    Article  PubMed  CAS  Google Scholar 

  74. Shah RJ, Diamond JM, Cantu E, et al. Latent class analysis identifies distinct phenotypes of primary graft dysfunction after lung transplantation. Chest. 2013;144(2):616–22.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Morrison MI, Pither TL, Fisher AJ. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J Thorac Dis. 2017;9(10):4084–97.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Brugière O, Suberbielle C, Thabut G, et al. Lung transplantation in patients with pretransplantation donor-specific antibodies detected by Luminex assay. Transplantation. 2013;95(5):761–5.

    Article  PubMed  CAS  Google Scholar 

  77. Hathorn KE, Chan WW, Lo WK. Role of gastroesophageal reflux disease in lung transplantation. World J Transplant. 2017;7(2):103–16.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Meyer KC, Raghu G, Verleden GM, et al. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J. 2014;44(6):1479–503.

    Article  PubMed  Google Scholar 

  79. Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33(2):127–33.

    Article  PubMed  Google Scholar 

  80. Vos R, Verleden SE, Verleden GM. Chronic lung allograft dysfunction: evolving practice. Curr Opin Organ Transplant. 2015;20:483–91.

    Article  PubMed  CAS  Google Scholar 

  81. Vos R, Vanaudenaerde BM, Verleden SE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011;37(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  82. Yates B, Murphy DM, Forrest IA, et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2005;172(6):772–5.

    Article  PubMed  Google Scholar 

  83. Gasper WJ, Sweet MP, Hoopes C, et al. Antireflux surgery for patients with end-stage lung disease before and after lung transplantation. Surg Endosc. 2008;22:495–500.

    Article  PubMed  CAS  Google Scholar 

  84. Hoppo T, Jarido V, Pennathur A, et al. Antireflux surgery preserves lung function in patients with gastroesophageal reflux disease and end-stage lung disease before and after lung transplantation. Arch Surg. 2011;146:1041–7.

    Article  PubMed  Google Scholar 

  85. Cantu E III, Appel JZ III, Hartwig MG, et al. J. Maxwell Chamberlain Memorial Paper. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg. 2004;78:1142–51.

    Article  PubMed  Google Scholar 

  86. Davis RD Jr, Lau CL, Eubanks S, et al. Improved lung allograft function after fundoplication in patients with gastroesophageal reflux disease undergoing lung transplantation. J Thorac Cardiovasc Surg. 2003;125:533–42.

    Article  PubMed  Google Scholar 

  87. Mertens V, Blondeau K, Pauwels A, et al. Azithromycin reduces gastroesophageal reflux and aspiration in lung transplant recipients. Dig Dis Sci. 2009;54:972–9.

    Article  PubMed  CAS  Google Scholar 

  88. Mertens V, Blondeau K, Van Oudenhove L, et al. Bile acids aspiration reduces survival in lung transplant recipients with BOS despite azithromycin. Am J Transplant. 2011;11:329–35.

    Article  PubMed  CAS  Google Scholar 

  89. Bobadilla JL, Jankowska-Gan E, Xu Q, et al. Reflux-induced collagen type v sensitization: potential mediator of bronchiolitis obliterans syndrome. Chest. 2010;138:363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jaksch P, Scheed A, Keplinger M, et al. A prospective interventional study on the use of extracorporeal photopheresis in patients with bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2012;31(9):950–7.

    Article  PubMed  Google Scholar 

  91. Marques MB, Schwartz J. Update on extracorporeal photopheresis in heart and lung transplantation. J Clin Apher. 2011;26(3):146–51.

    Article  PubMed  Google Scholar 

  92. Hachem RR, Yusen RD, Meyers BF, et al. Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant. 2010;29(9):973–80.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Burlingham WJ, Love RB, Jankowska-Gan E, et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117(11):3498–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bobadilla JL, Love RB, Jankowska-Gan E, et al. Th-17, monokines, collagen type V, and primary graft dysfunction in lung transplantation. Am J Respir Crit Care Med. 2008;177(6):660–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Saini D, Weber J, Ramachandran S, et al. Alloimmunity-induced autoimmunity as a potential mechanism in the pathogenesis of chronic rejection of human lung allografts. J Heart Lung Transplant. 2011;30(6):624–31.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hachem RR, Tiriveedhi V, Patterson GA, Aloush A, Trulock EP, Mohanakumar T. Antibodies to K-α 1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am J Transplant. 2012;12(8):2164–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Takenaka M, Subramanian V, Tiriveedhi V, et al. Complement activation is not required for obliterative airway disease induced by antibodies to major histocompatibility complex class I: implications for chronic lung rejection. J Heart Lung Transplant. 2012;31(11):1214–22.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sullivan JA, Jankowska-Gan E, Hegde S, et al. Th17 responses to collagen type V, kα1-tubulin, and vimentin are present early in human development and persist throughout life. Am J Transplant. 2017;17(4):944–56.

    Article  PubMed  CAS  Google Scholar 

  99. Yasufuku K, Heidler KM, O’Donnell PW, et al. Oral tolerance induction by type V collagen downregulates lung allograft rejection. Am J Respir Cell Mol Biol. 2001;25(1):26–34.

    Article  PubMed  CAS  Google Scholar 

  100. Yasufuku K, Heidler KM, Woods KA, et al. Prevention of bronchiolitis obliterans in rat lung allografts by type V collagen-induced oral tolerance. Transplantation. 2002;73(4):500–5.

    Article  PubMed  CAS  Google Scholar 

  101. Mizobuchi T, Yasufuku K, Zheng Y, et al. Differential expression of Smad7 transcripts identifies the CD4+CD45RChigh regulatory T cells that mediate type V collagen-induced tolerance to lung allografts. J Immunol. 2003;171(3):1140–7.

    Article  PubMed  CAS  Google Scholar 

  102. Yamada Y, Sekine Y, Yoshida S, et al. Type V collagen-induced oral tolerance plus low-dose cyclosporine prevents rejection of MHC class I and II incompatible lung allografts. J Immunol. 2009;183(1):237–45.

    Article  PubMed  CAS  Google Scholar 

  103. Meyer KC. Diagnosis and management of bronchiolitis obliterans syndrome following lung or hematopoietic cell transplantation. Expert Rev Respir Med. 2016;10(6):599–602.

    Article  PubMed  CAS  Google Scholar 

  104. Vanaudenaerde BM, De Vleeschauwer SI, Vos R, et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant. 2008;8(9):1911–20.

    Article  CAS  PubMed  Google Scholar 

  105. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148(1):32–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Tiriveedhi V, Takenaka M, Ramachandran S, et al. T regulatory cells play a significant role in modulating MHC class I antibody-induced obliterative airway disease. Am J Transplant. 2012;12(10):2663–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Fukami N, Ramachandran S, Takenaka M, Weber J, Subramanian V, Mohanakumar T. An obligatory role for lung infiltrating B cells in the immunopathogenesis of obliterative airway disease induced by antibodies to MHC class I molecules. Am J Transplant. 2012;12(4):867–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Serody JS, Hill GR. The IL-17 differentiation pathway and its role in transplant outcome. Biol Blood Marrow Transplant. 2012;18(1 Suppl):S56–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Shilling RA, Wilkes DS. Role of Th17 cells and IL-17 in lung transplant rejection. Semin Immunopathol. 2011;33(2):129–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Krebs R, Tikkanen JM, Ropponen JO, et al. Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis. Am J Pathol. 2012;181(5):1607–20.

    Article  PubMed  CAS  Google Scholar 

  111. Tesar BM, Du W, Shirali AC, Walker WE, Shen H, Goldstein DR. Aging augments IL-17 T-cell alloimmune responses. Am J Transplant. 2009;9(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  112. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J. 2006;27(4):779–87.

    Article  PubMed  CAS  Google Scholar 

  113. Vanaudenaerde BM, Wuyts WA, Dupont LJ, Van Raemdonck DE, Demedts MM, Verleden GM. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro: a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2003;22(11):1280–3.

    Article  PubMed  Google Scholar 

  114. Vanaudenaerde BM, Verleden SE, Vos R, et al. Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. Am J Respir Crit Care Med. 2011;183(8):977–86.

    Article  PubMed  CAS  Google Scholar 

  115. Shi Q, Cao H, Liu J, et al. CD4+ Foxp3+ regulatory T cells induced by TGF-β, IL-2 and all-trans retinoic acid attenuate obliterative bronchiolitis in rat trachea transplantation. Int Immunopharmacol. 2011;11(11):1887–94.

    Article  PubMed  CAS  Google Scholar 

  116. Neujahr DC, Larsen CP. Regulatory T cells in lung transplantation—an emerging concept. Semin Immunopathol. 2011;33(2):117–27.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Braun RK, Molitor-Dart M, Wigfield C, et al. Transfer of tolerance to collagen type V suppresses T-helper-cell-17 lymphocyte-mediated acute lung transplant rejection. Transplantation. 2009;88(12):1341–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Jaffar Z, Ferrini ME, Girtsman TA, Roberts K. Antigen-specific Treg regulate Th17-mediated lung neutrophilic inflammation, B-cell recruitment and polymeric IgA and IgM levels in the airways. Eur J Immunol. 2009;39(12):3307–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Griffin DO, Rothstein TL. Human “orchestrator” CD11b(+) B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Mol Med. 2012;18(9):1003–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.

    Article  PubMed  CAS  Google Scholar 

  121. Li W, Bribriesco AC, Nava RG, et al. Lung transplant acceptance is facilitated by early events in the graft and is associated with lymphoid neogenesis. Mucosal Immunol. 2012;5(5):544–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Huang YJ, Charlson ES, Collman RG, Colombini-Hatch S, Martinez FD, Senior RM. The role of the lung microbiome in health and disease. A National Heart, Lung, and Blood Institute workshop report. Am J Respir Crit Care Med. 2013;187:1382–7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cui L, Morris A, Huang L, et al. The microbiome and the lung. Ann Am Thorac Soc. 2014;11(Suppl 4):S227–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sharma NS, Wille KM, Athira S, et al. Distal airway microbiome is associated with immunoregulatory myeloid cell responses in lung transplant recipients. J Heart Lung Transplant. 2018;37(2):206–16.

    Article  Google Scholar 

  125. Mouraux S, Bernasconi E, Pattaroni C, et al. Airway microbiota signals anabolic and catabolic remodeling in the transplanted lung. J Allergy Clin Immunol. 2018;141(2):718–729.e7. pii: S0091-6749(17)31102-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Lama VN, Smith L, Badri L, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Walker N, Badri L, Wettlaufer S, et al. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol. 2011;178(6):2461–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Badri L, Murray S, Liu LX, et al. Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2011;183(8):1062–70.

    Article  PubMed  Google Scholar 

  129. De Miguel MP, Fuentes-Julián S, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–91.

    Article  PubMed  Google Scholar 

  130. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 2012;35(2):213–21.

    Article  PubMed  CAS  Google Scholar 

  131. Jarvinen L, Badri L, Wettlaufer S, et al. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 2008;181(6):4389–96.

    Article  PubMed  CAS  Google Scholar 

  132. Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE, Henderson WR Jr. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 2012;7(3):e33165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sun CK, Yen CH, Lin YC, et al. Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model. J Transl Med. 2011;9:118.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chien MH, Bien MY, Ku CC, et al. Systemic human orbital fat-derived stem/stromal cell transplantation ameliorates acute inflammation in lipopolysaccharide-induced acute lung injury. Crit Care Med. 2012;40(4):1245–53.

    Article  PubMed  CAS  Google Scholar 

  135. Danchuk S, Ylostalo JH, Hossain F, et al. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-α-induced protein 6. Stem Cell Res Ther. 2011;2(3):27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Saito S, Nakayama T, Hashimoto N, et al. Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuate bleomycin-induced lung damage. Am J Pathol. 2011;179(3):1088–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Hegab AE, Ha VL, Gilbert JL, et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells. 2011;29(8):1283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Huh JW, Kim SY, Lee JH, et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L255–66.

    Article  PubMed  CAS  Google Scholar 

  139. Firinci F, Karaman M, Baran Y, et al. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. Int Immunopharmacol. 2011;11(8):1120–6.

    Article  PubMed  CAS  Google Scholar 

  140. Chang YS, Choi SJ, Sung DK, et al. Intratracheal transplantation of human umbilical cord blood derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats. Cell Transplant. 2011;20(11–12):1843–54.

    Article  PubMed  Google Scholar 

  141. Toya SP, Li F, Bonini MG, et al. Interaction of a specific population of human embryonic stem cell-derived progenitor cells with CD11b+ cells ameliorates sepsis-induced lung inflammatory injury. Am J Pathol. 2011;178(1):313–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Liang OD, Mitsialis SA, Chang MS, et al. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells. 2011;29(1):99–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Moodley Y, Atienza D, Manuelpillai U, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol. 2009;175(1):303–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. McAuley DF, Curley GF, Hamid UI, et al. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol. 2014;306(9):L809–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Chambers DC, Enever D, Lawrence S, et al. Mesenchymal stromal cell therapy for chronic lung allograft dysfunction: results of a first-in-man study. Stem Cells Transl Med. 2017;6(4):1152–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Cooper DK, Ekser B, Burlak C, et al. Clinical lung xenotransplantation—what donor genetic modifications may be necessary? Xenotransplantation. 2012;19(3):144–58.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Burdorf L, Azimzadeh AM, Pierson RN III. Xenogeneic lung transplantation models. Methods Mol Biol. 2012;885:169–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Gaca JG, Lesher A, Aksoy O, Gonzalez-Stawinski GV, Platt JL, Lawson JH, Parker W, Davis RD. Disseminated intravascular coagulation in association with pig-to-primate pulmonary xenotransplantation. Transplantation. 2002;73(11):1717–23.

    Article  PubMed  CAS  Google Scholar 

  149. Cantu E, Gaca JG, Palestrant D, et al. Depletion of pulmonary intravascular macrophages prevents hyperacute pulmonary xenograft dysfunction. Transplantation. 2006;81(8):1157–64.

    Article  PubMed  Google Scholar 

  150. Li S, Waer M, Billiau AD. Xenotransplantation: role of natural immunity. Transpl Immunol. 2009;21(2):70–4.

    Article  PubMed  CAS  Google Scholar 

  151. Puga Yung GL, Li Y, Borsig L, et al. Complete absence of the αGal xenoantigen and isoglobotrihexosylceramide in α1,3galactosyltransferase knock-out pigs. Xenotransplantation. 2012;19(3):196–206.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ekser B, Bianchi J, Ball S, et al. Comparison of hematologic, biochemical, and coagulation parameters in α1,3-galactosyltransferase gene-knockout pigs, wild-type pigs, and four primate species. Xenotransplantation. 2012;19(6):342–54.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sahara H, Watanabe H, Pomposelli T, Yamada K. Lung xenotransplantation. Curr Opin Organ Transplant. 2017;22(6):541–8.

    Google Scholar 

  154. Song JJ, Ott HC. Bioartificial lung engineering. Am J Transplant. 2012;12(2):283–8.

    Article  PubMed  CAS  Google Scholar 

  155. Bonvillain RW, Danchuk S, Sullivan DE, et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A. 2012;18(23–24):2437–52.

    Google Scholar 

  156. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16(8):2581–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Fritsche CS, Simsch O, Weinberg EJ, et al. Pulmonary tissue engineering using dual-compartment polymer scaffolds with integrated vascular tree. Int J Artif Organs. 2009;32(10):701–10.

    Article  PubMed  CAS  Google Scholar 

  158. Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16(8):927–33.

    Article  PubMed  CAS  Google Scholar 

  159. Song JJ, Kim SS, Liu Z, et al. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg. 2011;92(3):998–1005; discussion 1005–6.

    Article  PubMed  Google Scholar 

  160. Farré R, Otero J, Almendros I, Navajas D. Bioengineered lungs: a challenge and an opportunity. Arch Bronconeumol. 2018;54(1):31–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith C. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, K.C., Raghu, G. (2018). Gaps and Future Directions in Lung Transplantation. In: Raghu, G., Carbone, R. (eds) Lung Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-91184-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91184-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91182-3

  • Online ISBN: 978-3-319-91184-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics