Skip to main content

Effect of Hindered Diffusion on the Parameter Sensitivity of Magnetic Resonance Spectra

  • Conference paper
  • First Online:
Bayesian Inference and Maximum Entropy Methods in Science and Engineering (maxent 2017)

Abstract

Magnetic Resonance spectroscopy is a powerful tool for elucidating the details of molecular dynamics. In many important applications, a model of hindered diffusion is useful for summarizing the complex dynamics of ordered media, such as a liquid crystalline environment, as well as the dynamics of proteins in solution or confined to a membrane. In previous work, we have shown how the sensitivity of a magnetic resonance spectrum to the details of molecular dynamics depends on the symmetries of the magnetic tensors for the relevant interactions, e.g., Zeeman, hyperfine, or quadrupolar interactions. If the hindered diffusion is modeled as arising from an orienting potential, then the parameter sensitivity of the magnetic resonance spectrum may be studied by generalizations of methods we have introduced in previous work. In particular, we will show how lineshape calculations using eigenfunction expansions of solutions of the diffusion equation, can be used as inputs to an information-geometric approach to parameter sensitivity estimation. We illustrate our methods using model systems drawn from Nuclear Magnetic Resonance, Electron Spin Resonance, and Nuclear Quadrupole Resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schneider, D.J., Freed, J.H.: Spin relaxation and motional dynamics. In: Hirschfelder, J.O., Wyatt, R.E., Coalson, R.D. (eds.) Lasers, Molecules and Methods, vol. 73, pp. 387–527. Wiley, New York (1989). Chap. 10

    Chapter  Google Scholar 

  2. Blum, K.: Density Matrix Theory and Applications, 2nd edn. Plenum (1996)

    Chapter  Google Scholar 

  3. Meirovitch, Eva, Igner, Dan, Eva, Igner, Moro, Giorgio, Freed, Jack H.: Electron-spin relaxation and ordering in supercooled nematic liquid crystals. J. Chem. Phys. 77, 3915–3938 (1982)

    Article  Google Scholar 

  4. Schneider, D.J., Freed, J.H.: Calculating slow motional magnetic resonance spectra: a user’s guide. In: Berliner, L., Reuben, J. (eds.) Biological Magnetic Resonsnce, vol. 8. Plenum (1989). Chap. 1

    Google Scholar 

  5. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics. Cambridge (1985)

    Google Scholar 

  6. Zare, R.N.: Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. Wiley, New York (1988)

    Google Scholar 

  7. Lee, S., Budil, D.E., Freed, J.H.: Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids. J. Chem. Phys. 101, 5529–5558 (1994). There are some typos in the expression for asymmetric diffusion

    Article  Google Scholar 

  8. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific (1988)

    Google Scholar 

  9. Earle, K.A., Smirnov, A.I.: High field ESR: applications to protein structure and dynamics. In: Grinberg, O.Y., Berliner, L. (eds.) Biological Magnetic Resonance, vol. 22, pp. 95–143. Kluwer (2004). Chap. 4

    Chapter  Google Scholar 

  10. Brink, D.M., Satchler, G.R.: Angular Momentum. Clarendon Press, Oxford (1968)

    MATH  Google Scholar 

  11. Earle, K.A.: Efficient computation of starting vector elements in magnetic Resonance line shape problems. In: Applied Magnetic Resonance (2017)

    Google Scholar 

  12. Moro, G., Segre, U.: Ultraslow motions and asymptotic lineshapes in ESR. J. Mag. Reson. 83(1), 65–78 (1989)

    Google Scholar 

  13. Earle, K.A., Mainali, L., Sahu, I.D., Schneider, D.J.: Magnetic resonance spectra and statistical geometry. Appl. Mag. Reson. 37, 865–880 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Earle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Earle, K.A., Broderick, T., Kazakov, O. (2018). Effect of Hindered Diffusion on the Parameter Sensitivity of Magnetic Resonance Spectra. In: Polpo, A., Stern, J., Louzada, F., Izbicki, R., Takada, H. (eds) Bayesian Inference and Maximum Entropy Methods in Science and Engineering. maxent 2017. Springer Proceedings in Mathematics & Statistics, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-91143-4_11

Download citation

Publish with us

Policies and ethics