Skip to main content

Electron Correlation Effects in Theoretical Model of Doped Fullerides

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

Abstract

The general model for electronic subsystem of doped fullerides suitable for description of both semiconducting behavior and magnetic order onset with Coulomb correlation, intersite exchange interaction, correlated hopping of electrons and orbital degeneracy of energy levels all taken into account is formulated. Within the model, the magnetization and Curie temperature calculations allow extension of the model phase diagram and discussion of driving forces for ferromagnetic state stabilization observed in polymerized fullerenes and tetrakis(diethylamino)ethylene-fullerene. Curie temperature dependence on integer electron concentration at realistic values of the Coulomb correlation strength and Hund’s rule coupling, associated with orbital degeneracy of energy levels, is strongly asymmetrical with respect to half-filling. The competition of itinerant behavior enhanced by the external pressure application and localization due to the correlation effects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunnarsson O (2004) Alkali-doped fullerides: narrow-band solids with unusual properties. World Scientific Publishing Co, Singapore

    Book  Google Scholar 

  2. Diederich F (1991) The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science 252:548–551

    Article  ADS  Google Scholar 

  3. Jin C (1994) Direct solid-phase hydrogenation of fullerenes. J Phys Chem 98:4215–4217

    Article  Google Scholar 

  4. Fischer JE, Heyney PA, Smith AB (1992) Solid-state chemistry of fullerene-based materials. Acc Chem Res 25:112–118

    Article  Google Scholar 

  5. Selig GH (1991) Fluorinated fullerenes. J Am Chem Soc 113:5475–5476

    Article  Google Scholar 

  6. Olah GA (1991) Chlorination and bromination of fullerenes. J Am Chem Soc 113:9385–9387

    Article  Google Scholar 

  7. Lundgren MP, Khan S, Baytak AK, Khan A (2016) Fullerene-benzene purple and yellow clusters: theoretical and experimental studies. J Mol Struct 1123:75–79

    Article  ADS  Google Scholar 

  8. Haddon RC, Hebard AF, Rosseinsky MJ (1991) Conducting films of C60 and C70 by alkali-metal doping. Nature 350:320–322

    Article  ADS  Google Scholar 

  9. Hebard AF, Rosseinsky MJ, Haddon RC (1991) Superconductivity at 18 K in potassium-doped C60. Nature 350:600–601

    Article  ADS  Google Scholar 

  10. Zhou Q, Zhu JE (1992) Fischer compressibility of M3C60 fullerene superconductors: relation between Tc and lattice parameter. Science 255:833–835

    Article  ADS  Google Scholar 

  11. Fleming RM (1992) Relation of structure and superconducting transition temperatures in A3C60. Nature 352:787–788

    Article  ADS  Google Scholar 

  12. Holczer K, Klein O, Huang SM (1991) Alkali-fulleride superconductors: synthesis, composition, and diamagnetic shielding. Science 252:1154–1157

    Article  ADS  Google Scholar 

  13. Rosseinsky MJ, Ramirez AP, Glarum SH (1991) Superconductivity at 28 K in RbxC60. Phys Rev Lett 66:2830–2832

    Article  ADS  Google Scholar 

  14. Varma CM, Zaanen J, Raghavachari K (1991) Superconductivity in the fullerenes. Science 254:989–992

    Article  ADS  Google Scholar 

  15. Zhang FC, Ogata M, Rice TM (1991) Attractive interaction and superconductivity for K3C60. Phys Rev Lett 67:3452–3455

    Article  ADS  Google Scholar 

  16. Chakravarty S, Gelfand MP, Kivelson S (1991) Electronic correlation effects and superconductivity in doped fullerenes. Science 254:970–974

    Article  ADS  Google Scholar 

  17. Manini N, Tosatti E (2006) Theoretical aspects of highly correlated fullerides: metal-insulator transition. Cornell University Library. Available via arxiv.org. https://arxiv.org/pdf/cond-mat/0602134.pdf

  18. Jian Ping L (1994) Metal-insulator transitions in degenerate Hubbard models and AxC60. Phys Rev B 49:5687–5690

    Article  Google Scholar 

  19. Yu D et al (2012) Mott-Hubbard localization in a model of the electronic subsystem of doped fullerides. Ukr J Phys 57:920–928

    Google Scholar 

  20. Ghosh S, Tongay S, Hebard AF, Sahin H, Peeters FM (2014) Ferromagnetism in stacked bilayers of Pd/C60. J Magn Magn Mater 349:128–134

    Article  ADS  Google Scholar 

  21. Makarova T (2003) Magnetism of carbon-based materials. In: Narlikar A (ed) Studies of high-Tc superconductivity, vol 45. Nova Science Publishers, New York, pp 107–169

    Google Scholar 

  22. Allemand P-M et al (1991) Organic molecular soft ferromagnetism in a fullerene C60. Science 253:301–303

    Article  ADS  Google Scholar 

  23. Schilder A, Bietsch W, Schwoerer M (1999) The role of TDAE for magnetism in [TDAE]C60. New J Phys 1:5(1–11)

    Article  Google Scholar 

  24. Wudl F (1992) The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids. Acc Chem Res 25:157–161

    Article  Google Scholar 

  25. Wood RA et al (2002) Ferromagnetic fullerene. J Phys Condens Matter 14:L385–L391

    Article  Google Scholar 

  26. Blundell SJ (2002) Magnetism in polymeric fullerenes: a new route to organic magnetism. J Phys Condens Matter 14:V1–V3

    Article  Google Scholar 

  27. Takahashi N et al (1993) Plasma-polymerized C60/C70 mixture films: electric conductivity and structure. J Appl Phys 74:5790–5798

    Article  ADS  Google Scholar 

  28. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  ADS  Google Scholar 

  29. Bethune DS et al (1990) The vibrational Raman spectra of purified solid films of C60 and C70. Chem Phys Let 179:219–222

    Article  ADS  Google Scholar 

  30. Meijer G, Bethune DS (1990) Laser deposition of carbon clusters on surfaces: a new approach to the study of fullerenes. J Chem Phys 93:7800–7802

    Article  ADS  Google Scholar 

  31. Vaughan GBM, Heiey PA, Luzzi DE (1991) Orientational disorder in solvent-free solid C70. Science 254:1350–1353

    Article  ADS  Google Scholar 

  32. Chen T et al (1992) Scanning-tunneling-microscopy and spectroscopy studies of C70 thin films on gold substrates. Phys Rev B 45:14411–14414

    Article  ADS  Google Scholar 

  33. Ajie H, Alvarez MM, Anz SJ (1990) Characterization of the soluble all-carbon molecules C60 and C70. J Phys Chem 94:8630–8633

    Article  Google Scholar 

  34. Saito S, Oshyama A (1991) Cohesive mechanism and energy bands of solid C60. Phys Rev Lett 66:2637–2640

    Article  ADS  Google Scholar 

  35. Achiba Y (1991) Visible, UV, and VUV absorption spectra of C60 thin films grown by the molecular-beam epitaxy (MBE) technique. Chem Lett 20:1233–1236

    Article  Google Scholar 

  36. Wang XQ et al (1993) Structural and electronic properties of large fullerenes. Z Phys D Suppl 26:264–266

    Article  ADS  Google Scholar 

  37. Kikuchi K (1991) Separation, detection, and UV/visible absorption spectra of fullerenes C76, C78 and C84. Chem Lett 9:1607–1610

    Article  Google Scholar 

  38. Kuzuo R, Terauchi M, Tanaka M (1994) Electron-energy-loss spectra of crystalline C84. Phys Rev B 49:5054–5057

    Article  ADS  Google Scholar 

  39. Armbruster JF, Roth M, Romberg HA (1994) Electron energy-loss and photoemission studies of solid C84. Phys Rev B 50:4933–4936

    Article  ADS  Google Scholar 

  40. Duclos SJ et al (1991) Thiel effects of pressure and stress on C60 fullerite to 20 GPa. Nature 351:380–382

    Article  ADS  Google Scholar 

  41. Regueiro MN (1991) Absence of a metallic phase at high pressures in C60. Nature 354:289–291

    Article  ADS  Google Scholar 

  42. Cheville RA, Halas NJ (1992) Time-resolved carrier relaxation in solid C60 thin films. Phys Rev B 45:4548–4550

    Article  ADS  Google Scholar 

  43. Erwin SC (1993) Electronic structure of the alkali-intercalated fullerides, endohedral fullerenes, and metal-adsorbed fullerenes. In: Billups WE, Ciufolini MA (eds) Buckminsterfullerenes. VCH Publishers, New York, pp 217–255

    Google Scholar 

  44. BrĂ¼hwiler PA et al (1993) Auger and photoelectron study of the Hubbard U in C60, K3C60 and K6C60. Phys Rev B 48:18296–18299

    Article  ADS  Google Scholar 

  45. Martin RL, Ritchie JP (1993) Coulomb and exchange interactions in C60 n−. Phys Rev B 48:4845–4849

    Article  ADS  Google Scholar 

  46. Didukh L, Kramar O (2002) Metallic ferromagnetism in a generalized Hubbard model. Low Temp Phys 28:30–36

    Article  ADS  Google Scholar 

  47. Didukh L, Kramar O, Skorenkyy Yu (2005) Metallic ferromagnetism in a generalized Hubbard model. In: Murray VN (ed) New developments in ferromagnetism research. Nova Science Publishers Inc, New York, pp 39–80

    Google Scholar 

  48. Skorenkyy Y et al (2007) Mott transition, ferromagnetism and conductivity in the generalized Hubbard model. Acta Phys Pol A 111:635–644

    Article  ADS  Google Scholar 

  49. Didukh L, Skorenkyy Y, Kramar O (2008) Electron correlations in narrow energy bands: modified polar model approach. Condens Matter Phys 11:443–454

    Article  Google Scholar 

  50. Lacroix-Lyon-Caen C, Cyrot M (1977) Alloy analogy of the doubly degenerate Hubbard model. Solid State Communs 21:837–840

    Article  ADS  Google Scholar 

  51. Gunnarsson O, Koch E, Martin RM (1997) Mott-Hubbard insulators for systems with orbital degeneracy. Phys Rev B 56:1146–1152

    Article  ADS  Google Scholar 

  52. Pederson MR, Quong AA (1992) Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules. Phys Rev B 46:13584–13591

    Article  ADS  Google Scholar 

  53. Antropov VP, Gunnarsson O, Jepsen O (1992) Coulomb integrals and model Hamiltonians for C60. Phys Rev B 46:13647–13650

    Article  ADS  Google Scholar 

  54. Hettich RL, Compton RN, Ritchie RH (1991) Doubly charged negative ions of carbon 60. Phys Rev Lett 67:1242–1245

    Article  ADS  Google Scholar 

  55. Lof RW et al (1992) Band gap, excitons and Colomb interaction in solid C60. Phys Rev Lett 68:3924–3927

    Article  ADS  Google Scholar 

  56. Didukh L et al (2001) Ground state ferromagnetism in a doubly orbitally degenerate model. Phys Rev B 64:144428(1–10)

    Article  ADS  Google Scholar 

  57. Roth LM (1969) Electron correlation in narrow energy bands. The two–pole approximation in a narrow s band. Phys Rev 184:451–459

    Article  ADS  Google Scholar 

  58. Kvyatkovskii OE et al (2005) Spintransfer mechanism of ferromagnetism in polymerized fullerenes: ab initio calculations. Phys Rev B 72:214426(1–8)

    Article  ADS  Google Scholar 

  59. ForrĂ³ L, MihĂ¡ly L (2001) Electronic properties of doped fullerenes. Rep Prog Phys 64:649–699

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Skorenkyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skorenkyy, Y., Kramar, O., Didukh, L., Dovhopyaty, Y. (2018). Electron Correlation Effects in Theoretical Model of Doped Fullerides. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_6

Download citation

Publish with us

Policies and ethics