Skip to main content

Iron Requirements and Adverse Pregnancy Outcomes

  • Chapter
  • First Online:
Handbook of Nutrition and Pregnancy

Part of the book series: Nutrition and Health ((NH))

  • 2124 Accesses

Abstract

Optimal iron (Fe) status across pregnancy is recognized for its benefits on maternal pregnancy outcomes and is increasingly linked to neonatal Fe stores at birth and subsequent health outcomes in the offspring. In spite of the importance of this nutrient, many unresolved questions exist on the basic science of Fe regulation at this key life stage. Increased attention has been placed on identification of optimal biomarkers of maternal Fe status across gestation, and on the challenge of evaluating Fe status indicators as a function of variable plasma volume expansion and maternal inflammatory status. While maternal consequences of anemia are well appreciated, elevated hemoglobin concentrations have also been linked to increased risk of adverse pregnancy outcomes. Discussion of maternal Fe status during gestation is incomplete without concurrent consideration of how maternal stores influence placental Fe transfer and the adequacy of neonatal Fe stores at birth. This is especially important when considering data that finds associations between neonatal Fe status and subsequent cognitive and neurobehavioral outcomes. This review summarizes new data on maternal Fe utilization across pregnancy as it impacts the pregnant woman and her neonate at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breymann C. Iron deficiency anemia in pregnancy. Semin Hematol. 2015;52:339–47.

    Article  Google Scholar 

  2. Mei Z, Cogswell ME, Looker AC, Pfeiffer CM, Cusick SE, Lacher DA, et al. Assessment of iron status in US pregnant women from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Am J Clin Nutr. 2011;93:1312–20.

    Article  CAS  Google Scholar 

  3. Pena-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;7:CD004736.

    Google Scholar 

  4. Pena-Rosas JP, De-Regil LM, Gomez Malave H, Flores-Urrutia MC, Dowswell T. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;10:CD009997.

    Google Scholar 

  5. Haider BA, Yakoob MY, Bhutta ZA. Effect of multiple micronutrient supplementation during pregnancy on maternal and birth outcomes. BMC Public Health. 2011;11(Suppl 3):S19.

    Article  Google Scholar 

  6. McDonagh M, Cantor A, Bougatsos C, Dana T, Blazina I. Routine iron supplementation and screening for iron deficiency anemia in pregnant women: a systematic review to update the U.S. Preventive Services Task Force Recommendation. Rockville (MD): Agency for Healthcare Research and Quality (US); 2015. Report No.:13-05187-EF-2.

    Google Scholar 

  7. Cantor AG, Bougatsos C, McDonagh M. Routine iron supplementation and screening for iron deficiency anemia in pregnancy. Ann Intern Med. 2015;163:400.

    Article  Google Scholar 

  8. Viteri FE. The consequences of iron deficiency and anemia in pregnancy. In: Allen L, King J, Lonnerdahl B, editors. Nutrient regulation during pregnancy, lactation and growth. New York: Plenum Press; 1994.

    Google Scholar 

  9. Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341:1986–95.

    Article  CAS  Google Scholar 

  10. McCance RA, Widdowson EM. Composition of the body. Br Med Bull. 1951;7:297–306.

    Article  CAS  Google Scholar 

  11. Hallberg L, Hogdahl AM, Nilsson L, Rybo G. Menstrual blood loss—a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand. 1966;45:320–51.

    Article  CAS  Google Scholar 

  12. Hunt JR, Zito CA, Johnson LK. Body iron excretion by healthy men and women. Am J Clin Nutr. 2009;89:1792–8.

    Article  CAS  Google Scholar 

  13. Bothwell TH. Iron requirements in pregnancy and strategies to meet them. Am J Clin Nutr. 2000;72:257S–64S.

    Article  CAS  Google Scholar 

  14. Kim A, Nemeth E. New insights into iron regulation and erythropoiesis. Curr Opin Hematol. 2015;22:199–205.

    Article  CAS  Google Scholar 

  15. Ruchala P, Nemeth E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci. 2014;35:155–61.

    Article  CAS  Google Scholar 

  16. Young MF, Glahn RP, Ariza-Nieto M, Inglis J, Olbina G, Westerman M, et al. Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young women. Am J Clin Nutr. 2009;89:533–8.

    Article  CAS  Google Scholar 

  17. O’Brien KO, Zavaleta N, Caulfield LE, Yang DX, Abrams SA. Influence of prenatal iron and zinc supplements on supplemental iron absorption, red blood cell iron incorporation, and iron status in pregnant Peruvian women. Am J Clin Nutr. 1999;69:509–15.

    PubMed  Google Scholar 

  18. Young MF, Griffin I, Pressman E, McIntyre AW, Cooper E, McNanley T. Utilization of iron from an animal-based iron source is greater than that of ferrous sulfate in pregnant and nonpregnant women. J Nutr. 2010;140:2162–6.

    Article  CAS  Google Scholar 

  19. Eskeland B, Malterud K, Ulvik RJ, Hunskaar S. Iron supplementation in pregnancy: is less enough? A randomized, placebo controlled trial of low dose iron supplementation with and without heme iron. Acta Obst Gynecol Scand. 1997;76:822–8.

    Article  CAS  Google Scholar 

  20. Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol. 2014;5:126.

    Article  Google Scholar 

  21. Young MF, Griffin I, Pressman E, McIntyre AW, Cooper E, McNanley T, et al. Maternal hepcidin is associated with placental transfer of iron derived from dietary heme and nonheme sources. J Nutr. 2012;142(1):33–9.

    Article  CAS  Google Scholar 

  22. Best CM, Pressman EK, Cao C, Cooper E, Guillet R, Yost OL, et al. Maternal iron status during pregnancy compared to neonatal iron status better predicts placental iron transporter expression in humans. FASEB J. 2016;30(10):3541–50.

    Article  CAS  Google Scholar 

  23. Roberfroid D, Huybregts L, Habicht JP, Lanou H, Henry MC, Meda N, et al. Randomized controlled trial of 2 prenatal iron supplements: is there a dose-response relation with maternal hemoglobin? Am J Clin Nutr. 2011;93:1012–8.

    Article  CAS  Google Scholar 

  24. Chang SC, O’Brien KO, Nathanson MS, Mancini J, Witter FR. Hemoglobin concentrations influence birth outcomes in pregnant African-American adolescents. J Nutr. 2003;133:2348–55.

    Article  CAS  Google Scholar 

  25. Zhou LM, Yang WW, Hua JZ, Deng CQ, Tao XG, Stoltzfus RJ. Relation of hemoglobin measured at different times in pregnancy to preterm birth and low birth weight in Shanghai, China. Am J Epidemiol. 1998;148:998–1006.

    Article  CAS  Google Scholar 

  26. Rahman MM, Abe SK, Kanda M, Narita S, Rahman MS, Bilano V, et al. Maternal body mass index and risk of birth and maternal health outcomes in low- and middle-income countries: a systematic review and meta-analysis. Obes Rev. 2015;16:758–70.

    Article  CAS  Google Scholar 

  27. Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: National Academies Press; 2001.

    Google Scholar 

  28. Qiu C, Zhang C, Gelaye B, Enquobahrie DA, Frederick IO, Williams MA. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care. 2011;34:1564–9.

    Article  CAS  Google Scholar 

  29. Fu S, Li F, Zhou J, Liu Z. The relationship between body iron status, iron intake and gestational diabetes: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e2383.

    Article  Google Scholar 

  30. World Health Organization CDC. Assessing the iron status of populations. Geneva: WHO Press; 2004.

    Google Scholar 

  31. World Health Organization. Iron deficiency anemia, assessment, prevention and control: a guide for programme managers. In: Geneva: WHO/NHD/013; 2001.

    Google Scholar 

  32. Recommendations to prevent and control iron deficiency in the United States. Centers for Disease Control and Prevention. MMWR Recomm Rep. 1998;47:1–29.

    Google Scholar 

  33. Cao C, O’Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev. 2013;71:35–51.

    Article  Google Scholar 

  34. Finch CA, Bellotti V, Stray S, Lipschitz DA, Cook JD, Pippard MJ, et al. Plasma ferritin determination as a diagnostic tool. West J Med. 1986;145:657–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Skikne BS, Flowers CH, Cook JD. Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood. 1990;75:1870–6.

    CAS  PubMed  Google Scholar 

  36. van den Broek NR, Letsky EA, White SA, Shenkin A. Iron status in pregnant women: which measurements are valid? Br J Haematol. 1998;103:817–24.

    Article  Google Scholar 

  37. Cook JD, Flowers CH, Skikne BS. The quantitative assessment of body iron. Blood. 2003;101:3359–64.

    Article  CAS  Google Scholar 

  38. Lee S, Guillet R, Cooper EM, Westerman M, Orlando M, Pressman E, et al. Maternal inflammation at delivery affects assessment of maternal iron status. J Nutr. 2014;144:1524–32.

    Article  CAS  Google Scholar 

  39. Iannotti LL, O’Brien KO, Chang SC, Mancini J, Schulman-Nathanson M, Liu S, et al. Iron deficiency anemia and depleted body iron reserves are prevalent among pregnant African-American adolescents. J Nutr. 2005;135:2572–7.

    Article  CAS  Google Scholar 

  40. Rehu M, Punnonen K, Ostland V, Heinonen S, Westerman M, Pulkki K, et al. Maternal serum hepcidin is low at term and independent of cord blood iron status. EurJ Haematol. 2010;85:345–52.

    Article  CAS  Google Scholar 

  41. Ru Y, Pressman EK, Cooper EM, Guillet R, Katzman PJ, Kent TR, et al. Iron deficiency and anemia are prevalent in women with multiple gestations. Am J Clin Nutr. 2016;104(4):1052–60.

    Article  CAS  Google Scholar 

  42. Thurnham DI, Northrop-Clewes CA, Knowles J. The use of adjustment factors to address the impact of inflammation on vitamin A and iron status in humans. J Nutr. 2015;145:1137S–43S.

    Article  CAS  Google Scholar 

  43. Knowles J, Thurnham DI, Phengdy B, Houamboun K, Philavong K, Keomoungkhone I, et al. Impact of inflammation on the biomarkers of iron status in a cross-sectional survey of Lao women and children. Br J Nutr. 2013;110:2285–97.

    Article  CAS  Google Scholar 

  44. Scholl TO. Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81:1218S–22S.

    Article  CAS  Google Scholar 

  45. Cogswell ME, Parvanta I, Ickes L, Yip R, Brittenham GM. Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr. 2003;78:773–81.

    Article  CAS  Google Scholar 

  46. Meier PR, Nickerson HJ, Olson KA, Berg RL, Meyer JA. Prevention of iron deficiency anemia in adolescent and adult pregnancies. Clin Med Res. 2003;1:29–36.

    Article  CAS  Google Scholar 

  47. Siega-Riz AM, Hartzema AG, Turnbull C, Thorp J, McDonald T, Cogswell ME. The effects of prophylactic iron given in prenatal supplements on iron status and birth outcomes: a randomized controlled trial. Am J Obstet Gynecol. 2006;194:512–9.

    Article  CAS  Google Scholar 

  48. Centers for Disease Control and Prevention (CDC). Iron deficiency—United States, 1999–2000. MMWR Morb Mortal Wkly Rep. 2002;51(40):897–9.

    Google Scholar 

  49. Thomas CE, Guillet R, Queenan RA, Cooper EM, Kent TR, Pressman EK, et al. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr. 2015;102:1088–95.

    Article  CAS  Google Scholar 

  50. Semba RD, Bloem MW. The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr. 2002;56:271–81.

    Article  CAS  Google Scholar 

  51. Semba RD, Ricks MO, Ferrucci L, Xue QL, Guralnik JM, Fried LP. Low serum selenium is associated with anemia among older adults in the United States. Eur J Clin Nutr. 2009;63:93–9.

    Article  CAS  Google Scholar 

  52. Smith EM, Tangpricha V. Vitamin D and anemia: insights into an emerging association. Curr Opin Endocrinol Diabetes Obes. 2015;22:432–8.

    Article  CAS  Google Scholar 

  53. Crowley N, Taylor S. Iron-resistant anaemia and latent rickets in schoolchildren. Arch Dis Child. 1939;14:317–22.

    Article  CAS  Google Scholar 

  54. Kumar VA, Kujubu DA, Sim JJ, Rasgon SA, Yang PS. Vitamin D supplementation and recombinant human erythropoietin utilization in vitamin D-deficient hemodialysis patients. J Nephrol. 2011;24:98–105.

    Article  Google Scholar 

  55. Rianthavorn P, Boonyapapong P. Ergocalciferol decreases erythropoietin resistance in children with chronic kidney disease stage 5. Pediatr Nephrol. 2013;28:1261–6.

    Article  Google Scholar 

  56. Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25:564–72.

    Article  CAS  Google Scholar 

  57. Smith EM, Alvarez JA, Martin GS, Zughaier SM, Ziegler TR, Tangpricha V. Vitamin D deficiency is associated with anaemia among African Americans in a US cohort. Br J Nutr. 2015;113:1732–40.

    Article  CAS  Google Scholar 

  58. Aucella F, Scalzulli RP, Gatta G, Vigilante M, Carella AM, Stallone C. Calcitriol increases burst-forming unit-erythroid proliferation in chronic renal failure. A synergistic effect with r-HuEpo. Nephron Clin Pract. 2003;95:c121–7.

    Article  CAS  Google Scholar 

  59. Alon DB, Chaimovitz C, Dvilansky A, Lugassy G, Douvdevani A, Shany S, et al. Novel role of 1,25(OH)(2)D(3) in induction of erythroid progenitor cell proliferation. Exp Hematol. 2002;30:403–9.

    Article  Google Scholar 

  60. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006;295:1549–55.

    Article  CAS  Google Scholar 

  61. Cao C, Pressman EK, Cooper EM, Guillet R, Westerman M, O’Brien KO. Prepregnancy body mass index and gestational weight gain have no negative impact on maternal or Neonatal iron status. Reprod Sci. 2016;23(5):613–22.

    Article  CAS  Google Scholar 

  62. Garcia-Valdes L, Campoy C, Hayes H, Florido J, Rusanova I, Miranda MT, et al. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int J Obes. 2015;39:571–8.

    Article  CAS  Google Scholar 

  63. Jones AD, Zhao G, Jiang YP, Zhou M, Xu G, Kaciroti N, et al. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur J Clin Nutr. 2016;70(8):918–24.

    Article  CAS  Google Scholar 

  64. Dao MC, Sen S, Iyer C, Klebenov D, Meydani SN. Obesity during pregnancy and fetal iron status: is Hepcidin the link? J Perinatol. 2013;33:177–81.

    Article  CAS  Google Scholar 

  65. Lee S, Guillet R, Cooper EM, Westerman M, Orlando M, Kent T, Pressman E, O’Brien KO. Prevalence of anemia and associations between neonatal iron status, hepcidin, and maternal iron status among neonates born to pregnant adolescents. Pediatr Res. 2016;79:42–8.

    Article  CAS  Google Scholar 

  66. Siu AL, US Preventive Services Task Force. Screening for iron deficiency anemia in young children: USPSTF Recommendation Statement. Pediatrics. 2015;136:746–52.

    Article  Google Scholar 

  67. Baker RD, Greer FR. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics. 2010;126:1040–50.

    Article  Google Scholar 

  68. Petry CD, Eaton MA, Wobken JD, Mills MM, Johnson DE, Georgieff MK. Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J Pediatr. 1992;121:109–14.

    Article  CAS  Google Scholar 

  69. Siddappa AM, Georgieff MK, Wewerka S, Worwa C, Nelson CA, Deregnier RA. Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res. 2004;55:1034–41.

    Article  CAS  Google Scholar 

  70. Riggins T, Miller NC, Bauer PJ, Georgieff MK, Nelson CA. Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev Neuropsychol. 2009;34:762–79.

    Article  Google Scholar 

  71. Centers for Disease Control and Prevention. Vital Signs. Teen pregnancy—United States, 1991–2009. MMWR Morb Mortal Wkly Rep. 2011;60:414–20.

    Google Scholar 

  72. Martin JA, Kung HC, Mathews TJ, Hoyert DL, Strobino DM, Guyer B, et al. Annual summary of vital statistics: 2006. Pediatrics. 2008;121:788–801.

    Article  Google Scholar 

  73. Goodnight W, Newman R, Society of Maternal-Fetal Medicine. Optimal nutrition for improved twin pregnancy outcome. Obstet Gynecol. 2009;114:1121–34.

    Article  CAS  Google Scholar 

  74. Martin JA, Hamilton BE, Osterman MJ, Curtin SC, Matthews TJ. Births: final data for 2012. Natl Vital Stat Rep. 2013;62:1–68.

    PubMed  Google Scholar 

  75. Zimmermann MB, Harrington M, Villalpando S, Hurrell RF. Nonheme-iron absorption in first-degree relatives is highly correlated: a stable-isotope study in mother-child pairs. Am J Clin Nutr. 2010;91:802–7.

    Article  CAS  Google Scholar 

  76. Andrews NC, Schmidt PJ. Iron homeostasis. Annu Rev Physiol. 2007;69:69–85.

    Article  CAS  Google Scholar 

  77. Gambling L, Czopek A, Andersen HS, Holtrop G, Srai SKS, Krejpcio Z, et al. Fetal iron status regulates maternal iron metabolism during pregnancy in the rat. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1063–70.

    Article  CAS  Google Scholar 

  78. Radlowski EC, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci. 2013;7:585.

    Article  Google Scholar 

  79. Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13:158–65.

    Article  Google Scholar 

  80. Greminger AR, Lee DL, Shrager P, Mayer-Proschel M. Gestational iron deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J Nutr. 2014;144:1058–66.

    Article  CAS  Google Scholar 

  81. Hays PM, Cruikshank DP, Dunn LJ. Plasma volume determination in normal and preeclamptic pregnancies. Am J Obstet Gynecol. 1985;151:958–66.

    Article  CAS  Google Scholar 

  82. Gallery EDM, Hunyor SN, Gyory AZ. Plasma-volume contraction--significant factor in both pregnancy-associated hypertension (pre-eclampsia) and chronic hypertension in pregnancy. Q J Med. 1979;48:593–602.

    CAS  PubMed  Google Scholar 

  83. Salas SP, Marshall G, Gutierrez B, Rosso P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006;47:203–8.

    Article  CAS  Google Scholar 

  84. Vricella LK, Louis JM, Chien E, Mercer BM. Blood volume determination in obese and normal-weight gravidas: the hydroxyethyl starch method. Am J Obstet Gynecol. 2015;213:408.e1–6.

    Article  Google Scholar 

  85. Mercer J, Erickson-Owens D. Delayed cord clamping increases infants’ iron stores. Lancet. 2006;367:1956–8.

    Article  Google Scholar 

  86. Mercer JS. Current best evidence: a review of the literature on umbilical cord clamping. J Midwifery Womens Health. 2001;46:402–14.

    Article  CAS  Google Scholar 

  87. Chaparro CM, Neufeld LM, Tena AG, Eguia-Liz CR, Dewey KG. Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet. 2006;367:1997–2004.

    Article  CAS  Google Scholar 

  88. McDonald SJ, Middleton P. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev. 2008:CD004074.

    Google Scholar 

  89. Stoltzfus RJ. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003;24:S99–103.

    Article  Google Scholar 

  90. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 95: anemia in pregnancy. Obstet Gynecol. 2008;112:201–7.

    Article  Google Scholar 

  91. Siu AL, U.S. Preventive Services Task Force. Screening for iron deficiency anemia and iron supplementation in pregnant women to improve maternal health and birth outcomes: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2015;163:529–36.

    Article  Google Scholar 

  92. Bothwell TH, Charlton RW, Cook JD, Finch CA. Iron metabolism in man. Oxford: Blackwell Scientific Publications; 1979.

    Google Scholar 

Download references

Acknowledgment

This work was supported by a USDA National Research Initiative Grant (2008–0857) and by The Gerber Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly O. O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Brien, K.O., Thomas, C.E. (2018). Iron Requirements and Adverse Pregnancy Outcomes. In: Lammi-Keefe, C., Couch, S., Kirwan, J. (eds) Handbook of Nutrition and Pregnancy. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90988-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90988-2_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-90986-8

  • Online ISBN: 978-3-319-90988-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics