Skip to main content

Basic Science and Translational Research in Peritoneal Dialysis

  • Living reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis

Abstract

This chapter describes the basic science and translational research that support the use of the peritoneal cavity as a means of dialysis for anephric patients.

In the first part of this chapter, we discuss the basic and applied clinical science which describes the process of peritoneal dialysis, including the fluid and solute exchanges that occur during the procedure. Details of the physiologic forces, the distributed nature of the barrier, the effects of the interstitial matrix on transport, the nature of the endothelial barrier, the effects of lymphatic absorption from the tissue, and the factors of hydrostatic pressure and the surface area are discussed. Then we relate this to the basic clinical model and demonstrate the connections between the fundamental calculations of the process and those used to characterize the clinical situation. Alternative theories of transperitoneal transport are presented and related to the fundamental principles.

In the second part, recent research is reviewed concerning the molecular signals that occur when a catheter is introduced into the peritoneal cavity and dialysis solutions are administered. There has been a plethora of research concerning the inflammatory signals that may be involved in these processes and in possible ways to prevent the harmful effects. The focus will be on both theoretical and practical ways to slow or halt the changes that often force our patients to switch to hemodialysis. The possibilities of this new knowledge are opening horizons to researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int Suppl. 1980;10:S111–6.

    CAS  PubMed  Google Scholar 

  2. Waniewski J. Physiological interpretation of solute transport parameters for peritoneal dialysis. J Theor Med. 2001;3:177–90.

    Article  Google Scholar 

  3. Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Phys. 1985;248(3 Pt 2):F413–24.

    CAS  Google Scholar 

  4. Flessner MF, Deverkadra R, Smitherman J, Li X, Credit K. In vivo determination of diffusive transport parameters in a superfused tissue. Am J Physiol Renal Physiol. 2006;291(5):F1096–103.

    Article  CAS  PubMed  Google Scholar 

  5. Flessner MF. Osmotic barrier of the parietal peritoneum. Am J Phys. 1994;267(5 Pt 2):F861–70.

    CAS  Google Scholar 

  6. Coester AM, Smit W, Struijk DG, Parikova A, Krediet RT. Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident peritoneal dialysis patients. Perit Dial Int. 2014;34(2):195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004;66(6):2437–45.

    Article  CAS  PubMed  Google Scholar 

  8. Davies SJ, Brown EA, Frandsen NE, Rodrigues AS, Rodriguez-Carmona A, Vychytil A, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int. 2005;67(4):1609–15.

    Article  CAS  PubMed  Google Scholar 

  9. Michels WM, Zweers MM, Smit W, Korevaar J, Struijk DG, van Westrhenen R, et al. Does lymphatic absorption change with the duration of peritoneal dialysis? Perit Dial Int. 2004;24(4):347–52.

    Article  PubMed  Google Scholar 

  10. Sampimon DE, Coester AM, Struijk DG, Krediet RT. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant. 2011;26(1):291–8.

    Article  PubMed  Google Scholar 

  11. Dedrick RL, Flessner MF, Collins JM, Schultz JS. Is the peritoneum a membrane? ASAIO J. 1982;5:1–8.

    Google Scholar 

  12. Flessner MF, Dedrick RL, Reynolds JC. Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles. Am J Phys. 1992;263(1 Pt 2):F15–23.

    CAS  Google Scholar 

  13. Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Phys. 1985;248(3 Pt 2):F425–35.

    CAS  Google Scholar 

  14. Flessner MF. Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol. 1996;7(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  15. Stachowska-Pietka J, Poleszczuk J, Flessner MF, Lindholm B, Waniewski J. Alterations of peritoneal transport characteristics in dialysis patients with ultrafiltration failure: tissue and capillary components. Nephrol Dial Transplant. 2019;34(5):864–70.

    Article  CAS  PubMed  Google Scholar 

  16. Stachowska-Pietka J, Poleszczuk J, Teixido-Planas J, Bonet-Sol J, Troya-Saborido MI, Waniewski J. Fluid tonicity affects peritoneal characteristics derived by 3-pore model. Perit Dial Int. 2019;39(3):243–51.

    Article  PubMed  Google Scholar 

  17. Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Phys. 1984;246(4 Pt 2):R597–607.

    CAS  Google Scholar 

  18. Patlak CS, Fenstermacher JD. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Phys. 1975;229(4):877–84.

    Article  CAS  Google Scholar 

  19. Gupta E, Wientjes MG, Au JL. Penetration kinetics of 2′,3′-dideoxyinosine in dermis is described by the distributed model. Pharm Res. 1995;12(1):108–12.

    Article  CAS  PubMed  Google Scholar 

  20. Wientjes MG, Badalament RA, Wang RC, Hassan F, Au JL. Penetration of mitomycin C in human bladder. Cancer Res. 1993;53(14):3314–20.

    CAS  PubMed  Google Scholar 

  21. Wientjes MG, Dalton JT, Badalament RA, Drago JR, Au JL. Bladder wall penetration of intravesical mitomycin C in dogs. Cancer Res. 1991;51(16):4347–54.

    CAS  PubMed  Google Scholar 

  22. Flessner MF, Lofthouse J, Zakaria el R. In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am J Phys. 1997;273(6 Pt 2):H2783–93.

    CAS  Google Scholar 

  23. Gotloib L, Mines M, Garmizo L, Varka I. Hemodynamic effects of increasing intraabdominal pressure in peritoneal dialysis. Perit Dial Bull. 1981;1:41–3.

    Article  Google Scholar 

  24. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int. 1993;44(5):1078–85.

    Article  CAS  PubMed  Google Scholar 

  25. Imholz AL, Koomen GC, Voorn WJ, Struijk DG, Arisz L, Krediet RT. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant. 1998;13(1):146–53.

    Article  CAS  PubMed  Google Scholar 

  26. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int. 1983;23(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  27. Wiig H, Reed RK, Aukland K. Micropuncture measurement of interstitial fluid pressure in rat subcutis and skeletal muscle: comparison to wick-in-needle technique. Microvasc Res. 1981;21(3):308–19.

    Article  CAS  PubMed  Google Scholar 

  28. Wiig H, Reed RK, Aukland K. Measurement of interstitial fluid pressure: comparison of methods. Ann Biomed Eng. 1986;14(2):139–51.

    Article  CAS  PubMed  Google Scholar 

  29. Zakaria ER, Lofthouse J, Flessner MF. In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am J Phys. 1999;276(2 Pt 2):H517–29.

    CAS  Google Scholar 

  30. Zakaria ER, Lofthouse J, Flessner MF. Effect of intraperitoneal pressures on tissue water of the abdominal muscle. Am J Physiol Renal Physiol. 2000;278(6):F875–85.

    Article  CAS  PubMed  Google Scholar 

  31. Reed RK, Wiig H. Compliance of the interstitial space in rats. I. Studies on hindlimb skeletal muscle. Acta Physiol Scand. 1981;113(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  32. Reed RK, Wiig H. Compliance of the interstitial space in rats. III. Contribution of skin and skeletal muscle interstitial fluid volume to changes in total extracellular fluid volume. Acta Physiol Scand. 1984;121(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  33. Wiig H, Reed RK. Compliance of the interstitial space in rats. II. Studies on skin. Acta Physiol Scand. 1981;113(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  34. Aukland K, Nicolaysen G. Interstitial fluid volume: local regulatory mechanisms. Physiol Rev. 1981;61(3):556–643.

    Article  CAS  PubMed  Google Scholar 

  35. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.

    Article  CAS  PubMed  Google Scholar 

  36. Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Distributed model of peritoneal fluid absorption. Am J Physiol Heart Circ Physiol. 2006;291(4):H1862–74.

    Article  CAS  PubMed  Google Scholar 

  37. Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach. Am J Physiol Renal Physiol. 2012;302(10):F1331–41.

    Article  CAS  PubMed  Google Scholar 

  38. Waniewski J, Stachowska-Pietka J, Flessner MF. Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. Am J Physiol Heart Circ Physiol. 2009;296(6):H1960–8.

    Article  CAS  PubMed  Google Scholar 

  39. Coester AM, Zweers MM, de Waart DR, Krediet RT. The relationship between effluent potassium due to cellular release, free water transport and CA125 in peritoneal dialysis patients. NDT Plus. 2008;1(Suppl 4):iv41–iv5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Musso CG, Contreras M, Coccia P. Water, sodium and potassium imbalance in peritoneal dialysis pediatric patients. Ann Pediatr Child Health. 2016;4(4):1110.

    Google Scholar 

  41. Waniewski J, Heimbürger O, Werynski A, Lindholm B. Diffusive mass transport coefficients are not constant during a single exchange in continuous ambulatory peritoneal dialysis. ASAIO J. 1996;42(5):M518–23.

    Article  CAS  PubMed  Google Scholar 

  42. Granger DN, Laine GA, Barnes GE, Lewis RE. Dynamics and control of transmicrovascular fluid exchange. In: Staub NC, Taylor AE, editors. Edema. New York: Raven Press; 1984. p. 189–228.

    Google Scholar 

  43. Wiig H, Rubin K, Reed RK. New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand. 2003;47(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  44. Guyton AC, Scheel K, Murphree D. Interstitial fluid pressure. 3. Its effect on resistance to tissue fluid mobility. Circ Res. 1966;19(2):412–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wiederhielm CA. The interstitial space. In: Fung Y, Perrone N, Anliker M, editors. Biomechanics, its foundations and objectives. Englewood Cliffs: Prentice Hall; 1972. p. 273–86.

    Google Scholar 

  46. Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher Y, et al. Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med. 2004;10(2):203–7.

    Article  CAS  PubMed  Google Scholar 

  47. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reitan NK, Juthajan A, Lindmo T, de Lange Davies C. Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy. J Biomed Opt. 2008;13(5):054040.

    Article  PubMed  CAS  Google Scholar 

  49. McMaster PD, Parsons RJ. Physiological conditions existing in connective tissue: I. The method of interstitial spread of vital dyes. J Exp Med. 1939;69(2):247–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bert JL, Perce RH. The interstitium and microvascular exchange. In: Renkin EM, Michel CC, editors. Handbook of physiology the cardiovascular system IV microcirculation. Bethesda: American Physiological Society; 1984. p. 521–47.

    Google Scholar 

  51. Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf). 2018;222(3)

    Google Scholar 

  52. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92(3):1005–60.

    Article  CAS  PubMed  Google Scholar 

  53. Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium. Am J Physiol Heart Circ Physiol. 2016;310(11):H1501–11.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Flessner MF. Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach. Am J Physiol Gastrointest Liver Physiol. 2001;281(2):G424–37.

    Article  CAS  PubMed  Google Scholar 

  55. Rippe B, Venturoli D. Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am J Physiol Renal Physiol. 2007;292(3):F1035–43.

    Article  CAS  PubMed  Google Scholar 

  56. Collins JM. Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir Physiol. 1981;46(3):391–404.

    Article  CAS  PubMed  Google Scholar 

  57. Flessner MF. The peritoneal dialysis system: importance of each component. Perit Dial Int. 1997;17(Suppl 2):S91–7.

    Article  PubMed  Google Scholar 

  58. Schultz JS, Armstrong W. Permeability of interstitial space of muscle (rat diaphragm) to solutes of different molecular weights. J Pharm Sci. 1978;67(5):696–700.

    Article  CAS  PubMed  Google Scholar 

  59. Wiig H, Gyenge C, Iversen PO, Gullberg D, Tenstad O. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: potential therapeutic consequences. Microcirculation. 2008;15(4):283–96.

    Article  CAS  PubMed  Google Scholar 

  60. Levick JR. Flow through interstitium and other fibrous matrices. Q J Exp Physiol. 1987;72(4):409–37.

    Article  CAS  PubMed  Google Scholar 

  61. Swartz MA, Kaipainen A, Netti PA, Brekken C, Boucher Y, Grodzinsky AJ, et al. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech. 1999;32(12):1297–307.

    Article  CAS  PubMed  Google Scholar 

  62. Zakaria E, Lofthouse J, Flessner MF. In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am J Phys. 1997;273(6 Pt 2):H2774–82.

    CAS  Google Scholar 

  63. Swabb EA, Wei J, Gullino PM. Diffusion and convection in normal and neoplastic tissues. Cancer Res. 1974;34(10):2814–22.

    CAS  PubMed  Google Scholar 

  64. Rosengren BI, Rippe B, Tenstad O, Wiig H. Acute peritoneal dialysis in rats results in a marked reduction of interstitial colloid osmotic pressure. J Am Soc Nephrol. 2004;15(12):3111–6.

    Article  PubMed  Google Scholar 

  65. Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958;27(2):229–46.

    Article  CAS  PubMed  Google Scholar 

  66. de Vriese AS, White R, Granger DN, Lameire NH. The peritoneal microcirculation in peritoneal dialysis. In: Khanna R, Krediet RT, editors. Nolph and Gokal’s textbook of peritoneal dialysis. USA: Springer; 2009. p. 51–71.

    Chapter  Google Scholar 

  67. Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res. 1996;79(3):581–9.

    Article  CAS  PubMed  Google Scholar 

  68. Flessner MF. Endothelial glycocalyx and the peritoneal barrier. Perit Dial Int. 2008;28(1):6–12.

    Article  PubMed  Google Scholar 

  69. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Phys. 1993;265(4 Pt 2):F463–76.

    CAS  Google Scholar 

  70. Yang B. Aquaporins. Netherlands: Springer; 2017.

    Book  Google Scholar 

  71. Verkman AS. Aquaporins at a glance. J Cell Sci. 2011;124(Pt 13):2107–12.

    Article  CAS  PubMed  Google Scholar 

  72. Devuyst O, Ni J. Aquaporin-1 in the peritoneal membrane: implications for water transport across capillaries and peritoneal dialysis. Biochim Biophys Acta. 2006;1758(8):1078–84.

    Article  CAS  PubMed  Google Scholar 

  73. Morelle J, Devuyst O. Water and solute transport across the peritoneal membrane. Curr Opin Nephrol Hypertens. 2015;24(5):434–43.

    Article  CAS  PubMed  Google Scholar 

  74. Benga G. The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications. Mol Asp Med. 2012;33(5–6):518–34.

    Article  CAS  Google Scholar 

  75. de Groot BL, Grubmüller H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol. 2005;15(2):176–83.

    Article  PubMed  CAS  Google Scholar 

  76. Sui H, Han B-G, Lee JK, Walian P, Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001;414(6866):872–8.

    Article  CAS  PubMed  Google Scholar 

  77. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, et al. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605.

    Article  CAS  PubMed  Google Scholar 

  78. Lai KN, Li FK, Lan HY, Tang S, Tsang AW, Chan DT, et al. Expression of aquaporin-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol. 2001;12(5):1036–45.

    Article  CAS  PubMed  Google Scholar 

  79. Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 2006;69(9):1518–25.

    Article  CAS  PubMed  Google Scholar 

  80. Carlsson O, Nielsen S, Zakaria el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Phys. 1996;271(6 Pt 2):H2254–62.

    CAS  Google Scholar 

  81. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS. Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Phys. 1999;276(1):C76–81.

    Article  CAS  Google Scholar 

  82. Rippe B. A three-pore model of peritoneal transport. Perit Dial Int. 1993;13(Suppl 2):S35–8.

    Article  PubMed  Google Scholar 

  83. Goffin E, Combet S, Jamar F, Cosyns JP, Devuyst O. Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis. 1999;33(2):383–8.

    Article  CAS  PubMed  Google Scholar 

  84. Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol. 2012;23(11):1900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Michel CC. Fluid movements through capillary walls. In: Renkin EM, Michel CC, editors. Handbook of Physiology, Section 2, Cardiovascular System (vol IV). Sect 2. Vol IV: American Physiological Society; 1984. p. 375–409.

    Google Scholar 

  87. Geigy Scientific Tables. Vol. 5 Heart and circulation. Lentner C, editor: CIBA-GEIGY Limited, Basel; 1990.

    Google Scholar 

  88. Crone C, Levitt DG. Capillary permeability to small solutes. In: Renkin EM, Michel CC, editors. Handbook of Physiology, Section 2, Cardiovascular System (vol IV): American Physiological Society; 1984. p. 411–61.

    Google Scholar 

  89. Watson PD. Permeability of cat skeletal muscle capillaries to small solutes. Am J Phys. 1995;268(1 Pt 2):H184–93.

    CAS  Google Scholar 

  90. Renkin EM, Watson PD, Sloop CH, Joyner WM, Curry FE. Transport pathways for fluid and large molecules in microvascular endothelium of the dog’s paw. Microvasc Res. 1977;14(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  91. Rippe B, Kamiya A, Folkow B. Simultaneous measurements of capillary diffusion and filtration exchange during shifts in filtration-absorption and at graded alterations in the capillary permeability surface area products (PS). Acta Physiol Scand. 1978;104(3):318–36.

    Article  CAS  PubMed  Google Scholar 

  92. Zakaria el R, Hunt CM, Li N, Harris PD, Garrison RN. Disparity in osmolarity-induced vascular reactivity. J Am Soc Nephrol. 2005;16(10):2931–40.

    Article  PubMed  Google Scholar 

  93. Waniewski J. A mathematical model of local stimulation of perfusion by vasoactive agent diffusing from tissue surface. Cardiovasc Eng. 2004;4(1):115–23.

    Article  Google Scholar 

  94. Renkin EM. Multiple pathways of capillary permeability. Circ Res. 1977;41(6):735–43.

    Article  CAS  PubMed  Google Scholar 

  95. Parker JC, Perry MA, Taylor AE. Permeability of the microvascular barrier. In: Staub NC, Taylor AE, editors. Edema. New York: Raven Press; 1984. p. 143–87.

    Google Scholar 

  96. Kellen MR, Bassingthwaighte JB. Transient transcapillary exchange of water driven by osmotic forces in the heart. Am J Physiol Heart Circ Physiol. 2003;285(3):H1317–31.

    Article  CAS  PubMed  Google Scholar 

  97. Wolf MB, Watson PD. Measurement of osmotic reflection coefficient for small molecules in cat hindlimbs. Am J Phys. 1989;256(1 Pt 2):H282–90.

    CAS  Google Scholar 

  98. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 1989;35(5):1234–44.

    Article  CAS  PubMed  Google Scholar 

  99. Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. Handbook of physiology The cardiovascular system microcirculation. Sect. 2, vol. IV, pt.1. Bethesda: American Physiological Society; 1984. p. 467–520.

    Google Scholar 

  100. Guyton AC, Hall JE. The systemic circulation. The textbook of medical physiology. 1981. p. 219–31.

    Google Scholar 

  101. Flessner MF. Transport kinetics during peritoneal dialysis. In: Leypoldt JK, editor. The artificial kidney: physiological modeling and tissue engineering. Austin: R. G. Landes Company; 1999. p. 59–89.

    Google Scholar 

  102. Rubin J, Adair T, Jones Q, Klein E. Inhibition of peritoneal protein losses during peritoneal dialysis in dogs. ASAIO J. 1985;8(4):234–7.

    CAS  Google Scholar 

  103. Chagnac A, Herskovitz P, Weinstein T, Elyashiv S, Hirsh J, Hammel I, et al. The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. J Am Soc Nephrol. 1999;10(2):342–6.

    Article  CAS  PubMed  Google Scholar 

  104. Chagnac A, Herskovitz P, Ori Y, Weinstein T, Hirsh J, Katz M, et al. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J Am Soc Nephrol. 2002;13(10):2554–9.

    Article  PubMed  Google Scholar 

  105. Flessner MF, Lofthouse J, Williams A. Increasing peritoneal contact area during dialysis improves mass transfer. J Am Soc Nephrol. 2001;12(10):2139–45.

    Article  CAS  PubMed  Google Scholar 

  106. Flessner MF, Lofthouse J, Zakaria ER. Improving contact area between the peritoneum and intraperitoneal therapeutic solutions. J Am Soc Nephrol. 2001;12(4):807–13.

    Article  CAS  PubMed  Google Scholar 

  107. Keshaviah P, Emerson PF, Vonesh EF, Brandes JC. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol. 1994;4(10):1820–6.

    Article  CAS  PubMed  Google Scholar 

  108. Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif. 1992;10(3–4):136–47.

    Article  CAS  PubMed  Google Scholar 

  109. Waniewski J. Distributed modeling of diffusive solute transport in peritoneal dialysis. Ann Biomed Eng. 2002;30(9):1181–95.

    Article  PubMed  Google Scholar 

  110. Zakaria ER, Rippe B. Peritoneal fluid and tracer albumin kinetics in the rat. Effects of increases in intraperitoneal hydrostatic pressure. Perit Dial Int. 1995;15(2):118–28.

    Article  CAS  PubMed  Google Scholar 

  111. Zink J, Greenway CV. Control of ascites absorption in anesthetized cats: effects of intraperitoneal pressure, protein, and furosemide diuresis. Gastroenterology. 1977;73(5):1119–24.

    Article  CAS  PubMed  Google Scholar 

  112. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int. 1995;47(4):1187–98.

    Article  CAS  PubMed  Google Scholar 

  113. Pannekeet MM, Imholz AL, Struijk DG, Koomen GC, Langedijk MJ, Schouten N, et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int. 1995;48(3):866–75.

    Article  CAS  PubMed  Google Scholar 

  114. Vonesh EF, Story KO, O’Neill WT. A multinational clinical validation study of PD ADEQUEST 2.0. PD ADEQUEST international study group. Perit Dial Int. 1999;19(6):556–71.

    Article  CAS  PubMed  Google Scholar 

  115. La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell’Oro C, Andrulli S, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68(2):840–6.

    Article  PubMed  Google Scholar 

  116. La Milia V, Limardo M, Virga G, Crepaldi M, Locatelli F. Simultaneous measurement of peritoneal glucose and free water osmotic conductances. Kidney Int. 2007;72(5):643–50.

    Article  PubMed  CAS  Google Scholar 

  117. Bernardo AP, Bajo MA, Santos O, del Peso G, Carvalho MJ, Cabrita A, et al. Two-in-one protocol: simultaneous small-pore and ultrasmall-pore peritoneal transport quantification. Perit Dial Int. 2012;32(5):537–44.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Galach M, Antosiewicz S, Baczynski D, Wankowicz Z, Waniewski J. Sequential peritoneal equilibration test: a new method for assessment and modelling of peritoneal transport. Nephrol Dial Transplant. 2013;28(2):447–54.

    Article  CAS  PubMed  Google Scholar 

  119. Teixido-Planas J, Troya-Saborido MI, Pedreira-Robles G, Del-Rio-Lafuente M, Romero-Gonzalez R, Bonet-Sol J. Measuring peritoneal absorption with the prolonged peritoneal equilibration test from 4 to 8 hours using various glucose concentrations. Perit Dial Int. 2014;34(6):605–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Waniewski J, Paniagua R, Stachowska-Pietka J, Ventura MD, Avila-Diaz M, Prado-Uribe C, et al. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int. 2013;33(4):419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Waniewski J, Heimburger O, Park MS, Werynski A, Lindholm B. Methods for estimation of peritoneal dialysate volume and reabsorption rate using macromolecular markers. Perit Dial Int. 1994;14(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  122. Zakaria ER, Rippe B. Intraperitoneal fluid volume changes during peritoneal dialysis in the rat: indicator dilution vs. volumetric measurements. Blood Purif. 1995;13(5):255–70.

    Article  CAS  PubMed  Google Scholar 

  123. Krediet RT, Struijk DG, Koomen GC, Hoek FJ, Arisz L. The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis (CAPD) is not dependent on molecular size. Perit Dial Int. 1990;10(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  124. Lindholm B, Heimburger O, Waniewski J, Werynski A, Bergstrom J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant. 1989;4(9):805–13.

    CAS  PubMed  Google Scholar 

  125. Heimbürger O, Waniewski J, Werynski A, Park MS, Lindholm B. Lymphatic absorption in CAPD patients with loss of ultrafiltration capacity. Blood Purif. 1995;13(6):327–39.

    Article  PubMed  Google Scholar 

  126. Waniewski J, Heimbürger O, Werynski A, Lindholm B. Simple models for fluid transport during peritoneal dialysis. Int J Artif Organs. 1996;19(8):455–66.

    Article  CAS  PubMed  Google Scholar 

  127. Olszowska A, Waniewski J, Werynski A, Anderstam B, Lindholm B, Wankowicz Z. Peritoneal transport in peritoneal dialysis patients using glucose-based and amino acid-based solutions. Perit Dial Int. 2007;27(5):544–53.

    Article  CAS  PubMed  Google Scholar 

  128. Heimbürger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int. 1990;38(3):495–506.

    Article  PubMed  Google Scholar 

  129. Zhe XW, Shan YS, Cheng L, Wang T. A simple method for the estimation of peritoneal fluid transport. Blood Purif. 2007;25(2):161–8.

    Article  PubMed  Google Scholar 

  130. Galach M, Werynski A, Waniewski J, Freida P, Lindholm B. Kinetic analysis of peritoneal fluid and solute transport with combination of glucose and icodextrin as osmotic agents. Perit Dial Int. 2009;29(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  131. Rippe B, Venturoli D, Simonsen O, de Arteaga J. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int. 2004;24(1):10–27.

    Article  CAS  PubMed  Google Scholar 

  132. Waniewski J, Heimbürger O, Werynski A, Lindholm B. Osmotic conductance of the peritoneum in CAPD patients with permanent loss of ultrafiltration capacity. Perit Dial Int. 1996;16:488–96.

    Article  Google Scholar 

  133. Sobiecka D, Waniewski J, Werynski A, Lindholm B. Peritoneal fluid transport in CAPD patients with different transport rates of small solutes. Perit Dial Int. 2004;24(3):240–51.

    Article  CAS  PubMed  Google Scholar 

  134. Rippe B, Davies S. Permeability of peritoneal and glomerular capillaries: what are the differences according to pore theory? Perit Dial Int. 2011;31(3):249–58.

    Article  PubMed  Google Scholar 

  135. Waniewski J, Debowska M, Lindholm B. How accurate is the description of transport kinetics in peritoneal dialysis according to different versions of the three-pore model? Perit Dial Int. 2008;28(1):53–60.

    Article  PubMed  Google Scholar 

  136. Fischbach M, Terzic J, Chauve S, Laugel V, Muller A, Haraldsson B. Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrol Dial Transplant. 2004;19(4):925–32.

    Article  CAS  PubMed  Google Scholar 

  137. Haraldsson B, Broms E, Johansson AC. How to evaluate and optimize peritoneal dialysis treatment. Nephrol Dial Transplant. 1998;13(Suppl 6):112–6.

    Article  PubMed  Google Scholar 

  138. Waniewski J, Antosiewicz S, Baczynski D, Poleszczuk J, Pietribiasi M, Lindholm B, et al. Changes of peritoneal transport parameters with time on dialysis: assessment with sequential peritoneal equilibration test. Int J Artif Organs. 2017;40(11):595–601.

    Article  CAS  PubMed  Google Scholar 

  139. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Duffield JS. Beyond EMT: epithelial STAT3 as a central regulator of Fibrogenesis. J Am Soc Nephrol. 2016;27(12):3502–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen YT, Chang YT, Pan SY, Chou YH, Chang FC, Yeh PY, et al. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol. 2014;25(12):2847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Esch S, Struijk DG, Krediet RT. The natural time course of membrane alterations during peritoneal Dialysis is partly altered by peritonitis. Perit Dial Int. 2016;36(4):448–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Liao JL, Zhang YH, Xiong ZB, Hao L, Liu GL, Ren YP, et al. The Association of Cognitive Impairment with peritoneal Dialysis-related peritonitis. Perit Dial Int. 2019;39(3):229–35.

    Article  PubMed  Google Scholar 

  144. Sia CSB, Paul E, Tregaskis P, Walker RG, Wilson SG. The longitudinal effects of peritonitis on peritoneal membrane function. Clin Nephrol. 2017;88(12):311–6.

    Article  CAS  PubMed  Google Scholar 

  145. Htay H, Seng JJB, Yong MHA, Pang SC, Wu SY, Chan CM, et al. Comparison of clinical presentation and outcomes of peritonitis in the elderly and younger peritoneal Dialysis patients. Perit Dial Int. 2019;39(2):163–8.

    Article  PubMed  Google Scholar 

  146. Liu X, Zuo X, Sun X, Hu Z. Effects of prophylactic antibiotics before peritoneal dialysis catheter implantation on the clinical outcomes of peritoneal dialysis patients. Ren Fail. 2019;41(1):16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Buchanan R, Fan S, NicFhogartaigh C. Performance of gram stains and 3 culture methods in the analysis of peritoneal Dialysis fluid. Perit Dial Int. 2019;39(2):190–2.

    Article  PubMed  Google Scholar 

  148. Yang J, Qi XM, Wu YG. The application analysis of multiplex real-time polymerase chain reaction assays for detection of pathogenic bacterium in peritoneal Dialysis-associated peritonitis. Blood Purif. 2019;47(4):337–45.

    Article  CAS  PubMed  Google Scholar 

  149. Parthasarathy R, Kashem T, NicFhogartaigh C, Melzer M, Fan SL. Clinical value of screening peritoneal Dialysis patients for bacterial colonization or contamination. Perit Dial Int. 2019;39(2):126–33.

    Article  PubMed  Google Scholar 

  150. Simoes-Silva L, Ferreira S, Santos-Araujo C, Tabaio M, Pestana M, Soares-Silva I, et al. Oral colonization of Staphylococcus species in a peritoneal Dialysis population: a possible reservoir for PD-related infections? Can J Infect Dis Med Microbiol = Journal canadien des maladies infectieuses et de la microbiologie medicale. 2018;2018:5789094.

    PubMed  Google Scholar 

  151. Oka H, Yamada S, Kamimura T, Aihara S, Hyodo M, Terakado N, et al. Better Oral hygiene habits are associated with a lower incidence of peritoneal Dialysis-related peritonitis. Therapeutic apheresis and dialysis: official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis. Jpn Soc Dialysis Ther. 2019;23(2):187–94.

    Google Scholar 

  152. Gadola L, Poggi C, Dominguez P, Poggio MV, Lungo E, Cardozo C. Risk factors and prevention of peritoneal Dialysis-related peritonitis. Perit Dial Int. 2019;39(2):119–25.

    Article  PubMed  Google Scholar 

  153. Chang JH, Oh J, Park SK, Lee J, Kim SG, Kim SJ, et al. Frequent patient retraining at home reduces the risks of peritoneal dialysis-related infections: a randomised study. Sci Rep. 2018;8(1):12919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Peikani FA, Shahgholian N, Kazemi A. The effect of health-belief-model-based training on behaviors preventing peritonitis in patients on peritoneal Dialysis. Int J Prev Med. 2018;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Nochaiwong S, Ruengorn C, Koyratkoson K, Thavorn K, Awiphan R, Chaisai C, et al. A clinical risk prediction tool for peritonitis-associated treatment failure in peritoneal Dialysis patients. Sci Rep. 2018;8(1):14797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Cauvi DM, Hawisher D, Dores-Silva PR, Lizardo RE, De Maio A. Macrophage reprogramming by negatively charged membrane phospholipids controls infection. FASEB J. 2019;33(2):2995–3009.

    Article  CAS  PubMed  Google Scholar 

  157. Wang Q, Cheng F, Xu Y, Zhang J, Qi J, Liu X, et al. Thymol alleviates lipopolysaccharide-stimulated inflammatory response via downregulation of RhoA-mediated NF-kappaB signalling pathway in human peritoneal mesothelial cells. Eur J Pharmacol. 2018;833:210–20.

    Article  CAS  PubMed  Google Scholar 

  158. Ossorio M, Bajo MA, Del Peso G, Martinez V, Fernandez M, Castro MJ, et al. Sustained low peritoneal effluent CCL18 levels are associated with preservation of peritoneal membrane function in peritoneal dialysis. PLoS One. 2017;12(4):e0175835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Ossorio M, Martinez V, Bajo MA, Del Peso G, Castro MJ, Romero S, et al. Prominent levels of the Profibrotic chemokine CCL18 during peritonitis: in vitro Downregulation by vitamin D receptor agonists. Biomed Res Int. 2018;2018:6415892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Chang Y. The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med. 2018;6:2050312118798941.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Iguchi D, Mizuno M, Suzuki Y, Sakata F, Maruyama S, Okada A, et al. Anti-C5a complementary peptide mitigates zymosan-induced severe peritonitis with fibrotic encapsulation in rats pretreated with methylglyoxal. Am J Physiol Renal Physiol. 2018;315(6):F1732–f46.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang Y, Feng J, Wang Q, Zhao S, Xu J, Li H. PPAR-gamma agonist rosiglitazone ameliorates peritoneal deterioration in peritoneal dialysis rats with LPS-induced peritonitis through up-regulation of AQP-1 and ZO-1. Biosci Rep. 2018;38(3)

    Google Scholar 

  163. Li M, Neoh KG, Xu LQ, Wang R, Kang ET, Lau T, et al. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir. 2012;28(47):16408–22.

    Article  CAS  PubMed  Google Scholar 

  164. Gagnon RF, Richards GK. A mouse model of implant-associated infection. Int J Artif Organs. 1993;16(11):789–98.

    Article  CAS  PubMed  Google Scholar 

  165. Gorman SP, Adair CG, Mawhinney WM. Incidence and nature of peritoneal catheter biofilm determined by electron and confocal laser scanning microscopy. Epidemiol Infect. 1994;112(3):551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gorman SP, Mawhinney WM, Adair CG, Issouckis M. Confocal laser scanning microscopy of peritoneal catheter surfaces. J Med Microbiol. 1993;38(6):411–7.

    Article  CAS  PubMed  Google Scholar 

  167. Pihl M, Davies JR, Johansson AC, Svensater G. Bacteria on catheters in patients undergoing peritoneal dialysis. Perit Dial Int. 2013;33(1):51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wong SS, Lau WY, Chan PK, Wan CK, Cheng YL. Antibiotic lock in Tenckhoff catheter for biofilm-associated peritonitis. Perit Dial Int. 2017;37(4):475–7.

    Article  PubMed  Google Scholar 

  169. Jost GF, Wasner M, Taub E, Walti L, Mariani L, Trampuz A. Sonication of catheter tips for improved detection of microorganisms on external ventricular drains and ventriculo-peritoneal shunts. J Clin Neurosci. 2014;21(4):578–82.

    Article  PubMed  Google Scholar 

  170. Washida N, Itoh H. The role of non-Tuberculous mycobacteria in peritoneal Dialysis-related infections: a literature review. Contrib Nephrol. 2018;196:155–61.

    Article  PubMed  Google Scholar 

  171. Sampaio J, Machado D, Gomes AM, Machado I, Santos C, Lima N, et al. Deciphering the contribution of biofilm to the pathogenesis of peritoneal Dialysis infections: characterization and microbial behaviour on Dialysis fluids. PLoS One. 2016;11(6):e0157870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wishart TFL, Aw L, Byth K, Rangan G, Sud K. A retrospective sequential comparison of topical application of medicated honey and Povidone iodine for preventing peritoneal Dialysis catheter-related infections. Perit Dial Int. 2018;38(4):302–5.

    Article  PubMed  Google Scholar 

  173. Puapatanakul P, Lumlertgul N, Thongbor N, Mahamongkholsawat J, Kanjanabuch T. Intracatheter antifungal lock leading to detrimental complications. Med Mycol Case Rep. 2018;22:58–60.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wong SS, Lau WY, Chan PK, Wan CK, Cheng YL. Extended experience in the use of antibiotic lock for eradication of biofilm Bacteria on Tenckhoff catheter. Perit Dial Int. 2019;39(2):187–90.

    Article  PubMed  Google Scholar 

  175. Pihl M, Arvidsson A, Skepo M, Nilsson M, Givskov M, Tolker-Nielsen T, et al. Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa. Pathog Dis. 2013;67(3):192–8.

    Article  CAS  PubMed  Google Scholar 

  176. Branger B, Marion K, Bergeron E, Perret C, Zabadani B, Reboul P, et al. Using detachment-promoting agents for the prevention of chronic peritoneal dialysis-associated infections. Artif Organs. 2008;32(12):918–24.

    Article  PubMed  Google Scholar 

  177. Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One. 2017;12(4):e0176883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. La Han B, Guan Q, Chafeeva I, Mendelson AA, da Roza G, Liggins R, et al. Peritoneal and systemic responses of obese type II diabetic rats to chronic exposure to a Hyperbranched Polyglycerol-based Dialysis solution. Basic Clin Pharmacol Toxicol. 2018;123(4):494–503.

    Article  PubMed  CAS  Google Scholar 

  179. Zhang W, Freichel M, van der Hoeven F, Nawroth PP, Katus H, Kalble F, et al. Novel endothelial cell-specific AQP1 knockout mice confirm the crucial role of endothelial AQP1 in ultrafiltration during peritoneal Dialysis. PLoS One. 2016;11(1):e0145513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Cavallini N, Delbro D, Tobin G, Braide M. Neuropeptide release augments serum albumin loss and reduces ultrafiltration in peritoneal dialysis. Perit Dial Int. 2012;32(2):168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shi Y, Yan H, Yuan J, Zhang H, Huang J, Ni Z, et al. Different patterns of inflammatory and angiogenic factors are associated with peritoneal small solute transport and peritoneal protein clearance in peritoneal dialysis patients. BMC Nephrol. 2018;19(1):119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Fan J, Ye H, Zhang X, Cao P, Guo Q, Mao H, et al. Association of Lean Body Mass Index and Peritoneal Protein Clearance in peritoneal dialysis patients. Kidney Blood Press Res. 2019;44(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  183. Nataatmadja M, Cho Y, Pascoe EM, Darssan D, Hawley CM, Johnson DW. Association between peritoneal glucose exposure and peritonitis in peritoneal Dialysis patients: the balANZ trial. Perit Dial Int. 2017;37(4):407–13.

    Article  CAS  PubMed  Google Scholar 

  184. Shu Y, Liu J, Zeng X, Hong HG, Li Y, Zhong H, et al. The effect of Overhydration on mortality and technique failure among peritoneal Dialysis patients: a systematic review and meta-analysis. Blood Purif. 2018;46(4):350–8.

    Article  PubMed  Google Scholar 

  185. Ng JK, Kwan BC, Chow KM, Pang WF, Cheng PM, Leung CB, et al. Asymptomatic fluid overload predicts survival and cardiovascular event in incident Chinese peritoneal dialysis patients. PLoS One. 2018;13(8):e0202203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sikorska D, Pawlaczyk K, Baum E, Wanic-Kossowska M, Czepulis N, Luczak J, et al. The association of serum soluble Klotho levels and residual diuresis and overhydration in peritoneal dialysis patients. Adv Clin Exp Med. 2019;

    Google Scholar 

  187. Keskar V, Biyani M, Blew B, Warren J, McCormick BB. Characteristics and outcomes of exit sites of buried peritoneal Dialysis catheters: a cohort study. Perit Dial Int. 2018;38(5):387–9.

    Article  PubMed  Google Scholar 

  188. Shendi AM, Davies N, Davenport A. Systemic endotoxin in peritoneal Dialysis patients. Perit Dial Int. 2018;38(5):381–4.

    Article  PubMed  Google Scholar 

  189. Elphick EH, Teece L, Chess JA, Do JY, Kim YL, Lee HB, et al. Biocompatible solutions and long-term changes in peritoneal solute transport. Clin J Am Soc Nephrol. 2018;13(10):1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yang JY, Chen L, Peng YS, Chen YY, Huang JW, Hung KY. Icodextrin is associated with a lower mortality rate in peritoneal Dialysis patients. Perit Dial Int. 2019;39(3):252–60.

    Article  PubMed  Google Scholar 

  191. Wu HY, Huang JW, Tsai WC, Peng YS, Chen HY, Yang JY, et al. Prognostic importance and determinants of uremic pruritus in patients receiving peritoneal dialysis: a prospective cohort study. PLoS One. 2018;13(9):e0203474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Yu Z, Lambie M, Chess J, Williams A, Do JY, Topley N, et al. Peritoneal protein clearance is a function of local inflammation and membrane area whereas systemic inflammation and comorbidity predict survival of incident peritoneal Dialysis patients. Front Physiol. 2019;10:105.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Heimbürger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int. 1992;41(5):1320–32.

    Article  PubMed  Google Scholar 

  194. Simonsen O, Sterner G, Carlsson O, Wieslander A, Rippe B. Improvement of peritoneal ultrafiltration with peritoneal dialysis solution buffered with bicarbonate/lactate mixture. Perit Dial Int. 2006;26(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  195. Smit W, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int. 2000;20(6):734–41.

    Article  CAS  PubMed  Google Scholar 

  196. Smit W, de Waart DR, Struijk DG, Krediet RT. Peritoneal transport characteristics with glycerol-based dialysate in peritoneal dialysis. Perit Dial Int. 2000;20(5):557–65.

    Article  CAS  PubMed  Google Scholar 

  197. Parikova A, Smit W, Struijk DG, Krediet RT. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int. 2006;70(11):1988–94.

    Article  CAS  PubMed  Google Scholar 

  198. Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int. 1990;38(3):465–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary of Terms

AGE

Advanced glycation end product

AP-1

Activator protein 1

APD

Automated peritoneal dialysis

AQP

Aquaporin

ASK

Apoptosis sigma-regulating kinase

BLS

Bicarbonate-lactate solution

BMI

Body mass index

b-PDF

Bicarbonate-buffered peritoneal dialysis fluid

BSA

Body surface area

CA-125

Cancer antigen 125

Caspase

Cysteine-aspartic protease

catenin β1

Protein involved in regulation of cell-cell adhesion and gene transcription

CCL18

Chemokine ligand 18 is produced by the innate immune system

CGRP

Calcitonin gene-related peptide

CTGF

Connective tissue growth factor

CXCL1

Small protein belonging to the CXCL chemokine family

DAMP

Damage-associated molecular patterns

DKK-1

Dickkopf-related protein

EGF

Epithelial growth factor

EMT

Epithelial-to-mesenchymal transition, equivalent to MMT in PD literature

EPS

Encapsulating peritoneal sclerosis

FGF

Fibroblast growth factor

FN

Fibronectin

FWF

Free water fraction

GAG

Glycosaminoglycans

GSK

Glycogen synthase kinase

HB-EGF

Heparin-binding epidermal growth factor

HDAC

Histone deacetylase

HG

High glucose (PDS)

HPG

Hyperbranched polyglycerol

HPMC

Human peritoneal mesothelial cells

Hsp-70

Heat shock protein

ICO

Icodextrin

IL

Interleukin

INF

Interferon

INFγ

Interferon gamma

JAK-STAT

Epithelial effector/signaling molecules

l-PDF

Lactate buffered peritoneal dialysis fluid

LpS

Hydraulic permeability

MCP-1

Monocyte chemoattractant protein 1

MGO

Methylglyoxal

MIP-1β

Macrophage inflammatory protein-1β or CCL4

miR-

micro RNA-

MMP

Matrix metallopeptidase

MMT

Mesothelial-to-mesenchymal transition

MTAC

Mass transfer area coefficient

MTC

Mass transfer coefficient

MW

Molecular weight

NAC

N-Acetyl-L-cysteine

NF-κβ

Nuclear factor kappa-light-chain-enhancer of activated B cells

NOX

NADPH oxidase

P38

P38 mitogen-activated protein kinase

PD

Peritoneal dialysis

PDF

Peritoneal dialysis fluid

PDGF

Platelet-derived growth factor

PDS

Peritoneal dialysis solution

PET

Peritoneal equilibration test

PKC

Protein kinase C

PMC

Peritoneal mesothelial cells

PMF

Peritoneal membrane failure

PPAR

Peroxisome proliferator-activated receptor

PSCA

Peritoneal surface contact area

PYS

Physioneal

Rho

Family of small proteins

ROCK

Rho kinase inhibitor

ROS

Reactive oxygen species

SD

Standard deviation

SET7/9

Lysine methyltransferase

SMA

Smooth muscle actin

SMAD

Main signal transducer of TGF-β family

Snail

Zinc finger protein

sPET

Sequential peritoneal equilibration test

TAN IIA

Sulfotanshinone IIA

TGF

Transforming growth factor

TLR

Toll-like receptor

TNFα

Tumor necrosis factor alpha

UF

Ultrafiltration in PD

UFF

Ultrafiltration failure

VDR

Vitamin D receptor

VEGF

Vascular endothelial growth factor

WNT

Wingless/integrated; signal transduction pathways

WT

Wild type (rodents)

ZEB

Zinc finger E-box-binding homeobox

ZO-1

Zonula occludens protein 1

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stachowska-Pietka, J., Waniewski, J., Flessner, M. (2021). Basic Science and Translational Research in Peritoneal Dialysis. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-90760-4_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90760-4_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90760-4

  • Online ISBN: 978-3-319-90760-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics