Skip to main content

Stable Isotopes in Understanding Origin and Degradation Processes of Hydrocarbons and Petroleum

  • Reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Abstract

In this essay we provide a short introduction to some basics of stable isotope geochemistry and an overview of few common applications in petroleum geochemistry. We identify the processes that are responsible for the carbon and hydrogen isotopic compositions of biological and geological organic matter and indicate the utility of stable isotopes in oil-source rock correlations. Stable isotope analyses are also exploited in the investigation of different alteration processes within oils and petroleum reservoirs. State of the art work is presented, and future research needs are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrusevich VE, Engel MH, Zumberge JE, Brothers LA (1998) Secular, episodic changes in stable carbon isotope composition of crude oils. Chem Geol 152:59–72

    CAS  Google Scholar 

  • Andrusevich VE, Engel MH, Zumberge JE (2000) Effects of paleolatitude on the stable carbon isotope composition of crude oils. Geology 28:847–850

    CAS  Google Scholar 

  • Asif M, Grice K, Fazeelat T (2009) Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Org Geochem 40:301–311

    CAS  Google Scholar 

  • Barman Skaare B, Wilkes H, Vieth A, Rein E, Barth T (2007) Alteration of crude oils from the Troll area by biodegradation: analysis of oil and water samples. Org Geochem 38:1865–1883

    CAS  Google Scholar 

  • Boreham CJ, Dowling LM, Murray AP (1995) Biodegradation and maturity influences on n-alkane isotopic profiles in terrigenous sequences. In: Grimalt JO, Dorronsoro C (eds) Organic geochemistry: developments and applications to energy, climate, environment and human history, Selected paper of the 7th International Meeting on Organic Geochemistry, pp 539–544

    Google Scholar 

  • Boreham CJ, Hope JM, Hartung KB (2001) Understanding source, distribution and preservation of Australian natural gas; a geochemical perspective. In: 2001 APPEA conference Australian petroleum production and exploration association, Canberra, pp 523–547

    Google Scholar 

  • Chikaraishi Y (2014) 13C/12C signatures in plants and algae. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 95–123

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Clayton CJ (1991) Effect of maturity on carbon isotope ratios of oils and condensates. Org Geochem 17:887–899

    CAS  Google Scholar 

  • Clayton CJ, Bjorøy M (1994) Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils. Org Geochem 21:737–750

    CAS  Google Scholar 

  • Connan J (1984) Biodegradation of crude oils in reservoirs. In: Brooks JM, Welte D (eds) Advances in petroleum geochemistry, vol 1. Academic, London, pp 299–355

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    CAS  Google Scholar 

  • Dawson D, Grice K, Alexander R (2005) Effect of maturation on the indigenous δD signatures of individual hydrocarbons in sediments and crude oils from the Perth Basin (Western Australia). Org Geochem 36:95–104

    CAS  Google Scholar 

  • Elias R, Vieth A, Riva A, Horsfield B, Wilkes H (2007) Improved assessment of biodegradation extent and prediction of petroleum quality. Org Geochem 38:2111–2130

    CAS  Google Scholar 

  • Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB, Stams AJM, Schlömann M, Richnow HH, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42:4356–4363

    CAS  PubMed  Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    CAS  Google Scholar 

  • George SC, Boreham CJ, Minifie SA, Teerman SC (2002) The effect of minor to moderate biodegradation on C5 to C9 hydrocarbons in crude oils. Org Geochem 33:1293–1317

    CAS  Google Scholar 

  • Gormly JR, Buck SP, Chung HM (1994) Oil-source rock correlation in the North Viking Graben. Org Geochem 22:403–413

    CAS  Google Scholar 

  • Hagemann R, Nief G, Roth E (1970) Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22:712–715

    CAS  Google Scholar 

  • Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125

    CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    CAS  PubMed  Google Scholar 

  • Hinrichs KU, Hayes JM, Bach W, Spivack AJ, Hmelo LR, Holm NG, Johnson CG, Sylva SP (2006) Biological formation of ethane and propane in the deep marine subsurface. Proc Natl Acad Sci U S A 103:14684–14689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefs J (2018) Stable isotope geochemistry, 8th edn. Springer, Berlin

    Google Scholar 

  • Jaekel U, Vogt C, Fischer A, Richnow HH, Musat F (2014) Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ Microbiol 16:130–140

    CAS  PubMed  Google Scholar 

  • Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–902

    CAS  PubMed  Google Scholar 

  • Lis GP, Schimmelmann A, Mastalerz M (2006) D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity. Org Geochem 37:342–353

    CAS  Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sediment Geol 140:143–175

    CAS  Google Scholar 

  • Maslen E, Grice K, Métayer PL, Dawson D, Edwards D (2011) Stable carbon isotopic compositions of individual aromatic hydrocarbons as source and age indicators in oils from western Australian basins. Org Geochem 42:387–398

    CAS  Google Scholar 

  • Mastalerz M, Schimmelmann A (2002) Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition. Org Geochem 33:921–931

    CAS  Google Scholar 

  • Masterson WD, Dzou LIP, Holba AG, Fincannon AL, Ellis L (2001) Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org Geochem 32:411–441

    CAS  Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730

    CAS  PubMed  Google Scholar 

  • Milkov AV, Dzou L (2007) Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oils in a deep hot reservoir. Geology 35:455–458

    CAS  Google Scholar 

  • Mook WG (2000) Environmental isotopes in the hydrological cycle – principles and applications. IAEA Publications, UNESCO, Paris

    Google Scholar 

  • Morasch B, Richnow HH, Vieth A, Schink B, Meckenstock RU (2004) Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds. Appl Environ Microbiol 70:2935–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pallasser RJ (2000) Recognizing biodegradation in gas/oil accumulations through the δ 13C compositions of gas components. Org Geochem 31:1363–1373

    CAS  Google Scholar 

  • Pedentchouk N, Turich C (2018) Carbon and hydrogen isotopic compositions of n-alkanes as a tool in petroleum exploration. Geol Soc Spec Publ 468:105–125. London

    Google Scholar 

  • Pedentchouk N, Freeman KH, Harris NB (2006) Different response of δD values of n-alkanes, isoprenoids, and kerogen during thermal maturation. Geochim Cosmochim Acta 70:2063–2072

    CAS  Google Scholar 

  • Peters KE, Moldowan JM (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Peters KE, Moldowan JM, Driscole AR, Demaison GJ (1989) Origin of Beatrice oil by co-sourcing from Devonian and Middle Jurassic source rocks, inner Moray Firth, United Kingdom. AAPG Bull 73:454–471

    CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide – biomarkers and isotopes in the environment and human history. Cambridge University Press, Cambridge

    Google Scholar 

  • Pond KL, Huang Y, Wang Y, Kulpa CF (2002) Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination. Environ Sci Technol 36:724–728

    CAS  PubMed  Google Scholar 

  • Radke J, Bechtel A, Gaupp R, Puttmann W, Schwark L, Sachse D, Gleixner G (2005) Correlation between hydrogen isotope ratios of lipid biomarkers and sediment maturity. Geochim Cosmochim Acta 69:5517–5530

    CAS  Google Scholar 

  • Rooney MA (1995) Carbon isotope ratios of light hydrocarbons as indicators of thermochemical sulfate reduction. In: Grimalt JO, Dorronsoro C (eds) Organic geochemistry: developments and applications to energy, climate, environment and human history, Selected paper of the 7th International Meeting on Organic Geochemistry, pp 523–525

    Google Scholar 

  • Rooney MA, Vuletich AK, Griffith CE (1998) Compound-specific isotope analysis as a tool for characterizing mixed oils: an example from the West of Shetlands area. Org Geochem 29:241–254

    CAS  Google Scholar 

  • Schidlowski M, Aharon P (1992) Carbon cycle and carbon isotope record: geochemical impact of life over 3.8 Ga of earth history. In: Schidlowski M (ed) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp 147–175

    Google Scholar 

  • Schimmelmann A, Boudou JP, Lewan MD, Wintsch RP (2001) Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis. Org Geochem 32:1009–1018

    CAS  Google Scholar 

  • Schimmelmann A, Sessions AL, Mastalerz M (2006) Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Annu Rev Earth Planet Sci 34:501–533

    CAS  Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661

    CAS  Google Scholar 

  • Sessions AL (2016) Factors controlling the deuterium contents of sedimentary hydrocarbons. Org Geochem 96:43–64

    CAS  Google Scholar 

  • Sessions AL, Sylva SP, Summons RE, Hayes JM (2004) Isotopic exchange of carbon-bound hydrogen over geologic timescales. Geochim Cosmochim Acta 68:1545–1559

    CAS  Google Scholar 

  • Sharp Z (2007) Principles of stable isotope geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Sofer Z (1984) Stable carbon isotope compositions of crude oils; application to source depositional environments and petroleum alteration. AAPG Bull 68:31–49

    CAS  Google Scholar 

  • Stahl WJ (1980) Compositional changes and 13C/12C fractionations during the degradation of hydrocarbons by bacteria. Geochim Cosmochim Acta 44:1903–1907

    CAS  Google Scholar 

  • Sun Y, Chen Z, Xu S, Cai P (2005) Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: evidence from a group of progressively biodegraded oils. Org Geochem 36:225–238

    CAS  Google Scholar 

  • Tang Y, Huang Y, Ellis GS, Wang Y, Kralert PG, Gillaizeau B, Ma Q, Hwang R (2005) A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil. Geochim Cosmochim Acta 69:4505–4520

    CAS  Google Scholar 

  • Vieth A, Wilkes H (2006) Deciphering biodegradation effects on light hydrocarbons in crude oils using their stable carbon isotopic composition: a case study from the Gullfaks oil field, offshore Norway. Geochim Cosmochim Acta 70:651–665

    CAS  Google Scholar 

  • Vieth A, Wilkes H (2010) Stable isotopes in understanding origin and degradation processes of petroleum. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 97–111

    Google Scholar 

  • Vogt C, Cyrus E, Herklotz I, Schlosser D, Bahr A, Herrmann S, Richnow HH, Fischer A (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800

    CAS  PubMed  Google Scholar 

  • Vogt C, Dorer C, Musat F, Richnow HH (2016) Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons – from enzymes to the environment. Curr Opin Biotechnol 41:90–98

    CAS  PubMed  Google Scholar 

  • Wang Y, Sessions AL, Nielsen RJ, Goddard WA III (2009a) Equilibrium 2H/1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations. Geochim Cosmochim Ac 73:7060–7075

    CAS  Google Scholar 

  • Wang Y, Sessions AL, Nielsen RJ, Goddard WA III (2009b) Equilibrium 2H/1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers. Geochim Cosmochim Ac 73:7076–7086

    CAS  Google Scholar 

  • Wang Y, Sessions AL, Nielsen RJ, Goddard WA III (2013) Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons. Geochim Cosmochim Ac 107:82–95

    CAS  Google Scholar 

  • Welte DH, Kratochvil H, Rullkötter J, Ladwein H, Schaefer RG (1982) Organic geochemistry of crude oils from the Vienna Basin and an assessment of their origin. Chem Geol 35:33–68

    CAS  Google Scholar 

  • Wenger LM, Davis CL, Isaksen GH (2002) Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reserv Eval Eng 5:375–383

    CAS  Google Scholar 

  • Whiticar MJ (1994) Correlation of natural gases with their sources. In: Magoon LB, Dow WG (eds) The petroleum system – from source to trap. American Association of Petroleum Geologists, pp 261–283

    Google Scholar 

  • Whiticar MJ, Snowdon LR (1999) Geochemical characterization of selected Western Canada oils by C5–C8 compound specific isotope correlation (CSIC). Org Geochem 30:1127–1161

    CAS  Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, Di Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037

    CAS  PubMed  Google Scholar 

  • Wilkes H, Vieth A, Elias R (2008) Constraints on the quantitative assessment of in-reservoir biodegradation using compound specific stable carbon isotopes. Org Geochem 39:1215–1221

    CAS  Google Scholar 

  • Xiao Q, Sun Y, Chai P (2011) Experimental study of the effects of thermochemical sulfate reduction on low molecular weight hydrocarbons in confined systems and its geochemical implications. Org Geochem 42:1375–1393

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vieth-Hillebrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vieth-Hillebrand, A., Wilkes, H. (2020). Stable Isotopes in Understanding Origin and Degradation Processes of Hydrocarbons and Petroleum. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-90569-3_36

Download citation

Publish with us

Policies and ethics