Skip to main content

Gas Hydrates: Formation, Structures, and Properties

  • Reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

In this chapter, the characteristics of clathrate hydrates of natural gases, generally called gas hydrates, will be presented. After an introduction to hydrate structures, which have been verified in nature as well as the associated hydrate formers, the phase diagrams exhibiting the stability fields and thermodynamic properties of these natural systems depending on their composition will be discussed. Natural gas hydrates are methane-rich but may also contain CO2, H2S, and other hydrocarbons and hence vary in their thermodynamic properties.

Different models regarding the formation and growth processes, including kinetics with respect to heat and mass transfer effects, experimental observations regarding the cage occupancy during the formation process as well as the influence of sediments and pore water salinity will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300

    Article  CAS  Google Scholar 

  • Beeskow-Strauch B, Schicks JM, Naumann R, Erzinger J (2011) The influence of SO2 and NO2 impurities on CO2 gas hydrate formation and stability. Chem Eur J 17:4376–4384

    Article  CAS  PubMed  Google Scholar 

  • Bernabé Y, Fryer DT, Hayes JA (1992) The effect of cements on the strength of granular rocks. Geophys Res Lett 19:1511–1514

    Article  Google Scholar 

  • Bernard BB, Brooks JM, Sackett WM (1976) Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett 31:48–54

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amman R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Cherskiy NV, Tsarev VP, Nikitin SP (1985) Investigations and predictions of conditions of accumulation of gas resources in gas-hydrate pools. Pet Geol 21:65–89

    Google Scholar 

  • Christiansen RL, Sloan ED (1994) Mechanisms and kinetics of hydrate formation. In: Sloan ED, Happel J, Hnatow MA (eds) International conference on natural gas hydrates, vol 715. New York Academy of Science, New Paltz, pp 283–305

    Google Scholar 

  • Dallimore SR, Uchida T, Collett TS (1999) Scientific results from JAPAX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada. Geol Surv Canada Bull 544:295–311

    Google Scholar 

  • Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658

    Article  CAS  Google Scholar 

  • Heeschen K, Schicks JM, Oeltzschner G (2016) The promoting effect of natural sand on methane hydrate formation: grain sizes and mineral composition. Fuel 181:139–147

    CAS  Google Scholar 

  • Hester KC, Dunk RM, White SN, Brewer PG, Peltzer ET, Sloan ED (2007) Gas hydrate measurements at hydrate ridge using Raman spectroscopy. Geochim Cosmochim Acta 71:2947–2959

    CAS  Google Scholar 

  • Jacobson LC, Hujo W, Molinero V (2010a) Amorphous precursors in the nucleation of clathrate hydrates. J Am Chem Soc 132:11806–11811

    CAS  PubMed  Google Scholar 

  • Jacobson LC, Hujo W, Molinero V (2010b) Nucleation pathways of clathrate hydrates: effects of guest size and solubility. J Phys Chem B 114:13796–13807

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri J, Robinson DB (1965) Hydrates in the methane-nitrogen system. Can J Chem Eng 43:75–78

    Article  CAS  Google Scholar 

  • Kastner M, Kvenvolden KA, Lorenson TD (1998) Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone. Earth Planet Sci Lett 156:173–183

    Article  CAS  Google Scholar 

  • Klapp SA, Murshed MM, Pape T, Klein H, Bohrmann G, Brewer PG, Kuhs WF (2010) Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico. Earth Planet Sci Lett 299:207–217

    Article  CAS  Google Scholar 

  • Klapproth A, Techmer KS, Klapp SA, Murshed MM, Kuhs WF (2007) Microstructure of gas hydrates in porous media. In: Kuhs WF (ed) Physics and chemistry of ice. RSC Publishing, Cambridge, UK, pp 321–328

    Google Scholar 

  • Kvamme B (1996) A new theorie for kinetics of hydrate formation. In: Proceedings of the 2nd international conference on natural gas hydrates, June 2–6, Toulouse, pp 139–146

    Google Scholar 

  • Kvenvolden KA (1995) A review of the geochemistry of methane in natural gas hydrate. Org Geochem 23:997–1008

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrate. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC, pp 3–18

    Google Scholar 

  • Lu H, Seo Y, Lee J, Moudrakovski I, Ripmeester JA, Chapman NR, Coffin RB, Gardner G, Pohlman J (2007) Complex gas hydrate from Cascadia margin. Nature 445:303–306

    CAS  PubMed  Google Scholar 

  • Lu Z, Zhu Y, Zhang Y, Wen H, Li Y, Liu C (2011) Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai province, China. Cold Reg Sci Technol 66(2):93–104

    Google Scholar 

  • Ludwig R (2007) The importance of tetrahedrally coordinated molecules for the explanation of liquid water properties. ChemPhysChem 8:938–943

    CAS  PubMed  Google Scholar 

  • Luzi M, Schicks JM, Naumann R, Erzinger J, Udachin K, Moudrakowski I, Ripmeester JA, Ludwig R (2008) Investigations on the influence of guest molecule characteristics and the presence of multicomponent gas mixtures on gas hydrate properties. In: Proceedings of the 6th international conference on gas hydrates, Vancouver

    Google Scholar 

  • Mak TCW, McMullan RK (1965) Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. J Chem Phys 42:2732–2737

    Google Scholar 

  • McMullan RK, Jeffrey GA (1965) Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate. J Chem Phys 42:2725–2732

    CAS  Google Scholar 

  • Mochizuki T, Mori YH (2006) Clathrate-hydrate film growth along water/hydrate-former phase boundaries – numerical heat-transfer study. J Cryst Growth 290:642–652

    CAS  Google Scholar 

  • Müller HR, von Stackelberg M (1952) Zur Struktur der Gashydrate – 2. Mitt Naturwissenschaften 39:20–21

    Google Scholar 

  • Østergaard KK, Anderson R, Llamedo M, Tohidi B (2002) Hydrate phase equilibria in porous media: effect of pore size and salinity. Terra Nova 14:307–312

    Article  Google Scholar 

  • Radhakrishnan R, Trout BL (2002) A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. J Phys Chem 117:1786–1796

    Article  CAS  Google Scholar 

  • Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM (1987) A new clathrate hydrate structure. Nature 325:135–136

    Article  CAS  Google Scholar 

  • Rodger PM (1990) Stability of gas hydrates. J Phys Chem 94:6080–6089

    Article  CAS  Google Scholar 

  • Schicks JM, Luzi-Helbing M (2013) Cage occupancy and structural changes during hydrate formation from initial stages to resulting hydrate phase. Spectrochim Acta, Part A 115:528–536

    Article  CAS  Google Scholar 

  • Schicks JM, Luzi-Helbing M (2015) Kinetic and thermodynamic aspects of clathrate hydrate nucleation and growth. J Chem Eng Data 60:269–277

    Article  CAS  Google Scholar 

  • Schicks JM, Naumann R, Erzinger J, Hester K, Koh CA, Sloan ED (2006) Phase transitions in mixed gas hydrates: experimental observations versus calculated data. J Phys Chem B 110:11468–11474

    Article  CAS  PubMed  Google Scholar 

  • Schicks JM, Luzi M, Erzinger J, Spangenberg E (2007) Clathrate hydrate formation and growth: experimental data versus predicted behaviour. In: Kuhs WF (ed) Physics and chemistry of ice. RSC Publishing, Cambridge, UK, pp 537–544

    Google Scholar 

  • Schicks JM, Luzi M, Spangenberg E, Naumann R, Erzinger J (2008) Hydrate formation investigations and kinetic studies under various defined conditions. In: Proceedings of the 6th international conference on gas hydrates, Vancouver

    Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  CAS  Google Scholar 

  • Sloan ED Jr (1998) Clathrate hydrates of natural gases. Marcel Dekker, New York

    Google Scholar 

  • Sloan ED Jr, Fleyfel F (1991) A molecular mechanism for gas hydrate nucleation from ice. AIChE 37:1281–1292

    Article  CAS  Google Scholar 

  • Sloan ED Jr, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press Tayler and Francis Group, Boca Raton

    Google Scholar 

  • Spangenberg E, Priegnitz M, Heeschen K, Schicks JM (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data 60(2):258–268

    Article  CAS  Google Scholar 

  • Subramanian S, Sloan ED (1999) Molecular measurements of methane hydrate formation. Fluid Phase Equilibra 158–160:813–820

    Article  Google Scholar 

  • Subramanian S, Kini RA, Dec SF, Sloan ED (2000) Evidence of structure II hydrate formation from ethane + methane mixtures. Chem Eng Sci 55:1981–1999

    Article  CAS  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at hydrate ridge, Cascadia margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC

    Google Scholar 

  • Tohidi B, Anderson R, Clennell MB, Burgass RW, Biderkab AB (2001) Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology 29:867–870

    Article  CAS  Google Scholar 

  • Uchida T, Ebinuma T, Kawabata J, Narita H (1999) Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. J Cryst Growth 204:348–356

    Article  CAS  Google Scholar 

  • Uchida T, Okabe R, Mae S, Ebinuma T, Narita H (2000) In situ observation of methane hydrate formation mechanism by Raman spectroscopy. Ann N Y Acad Sci 912:593–601

    Article  CAS  Google Scholar 

  • Uchida T, Takeya S, Chuvilin EM, Ohmura R, Nagao J, Yakushev VS et al (2004) Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. J Geophys Res Solid Earth 109:B05206

    Google Scholar 

  • Vatamanu J, Kusalik PG (2006) Unusual crystalline and polycrystalline structures in methane hydrates. J Am Chem Soc 128:15588–15589

    CAS  PubMed  Google Scholar 

  • von Stackelberg M (1949) Feste Gashydrate. Naturwissenschaften 36(11):327–333

    CAS  Google Scholar 

  • von Stackelberg M, Müller HR (1951) Zur Struktur der Gashydrate. Naturwissenschaften 38:456

    Google Scholar 

  • Walsh MR, Koh CA, Sloan ED, Sum AK, Wu DT (2009) Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 326:1095–1098

    CAS  PubMed  Google Scholar 

  • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Maria Schicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schicks, J.M. (2020). Gas Hydrates: Formation, Structures, and Properties. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-90569-3_2

Download citation

Publish with us

Policies and ethics