Skip to main content

Optic Atrophy and Papilledema

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology
  • 30 Accesses

Abstract

Optic atrophy is a misnomer. Although the term atrophy generally refers to physiologic involution or reduction in size, optic atrophy refers to cell death. In particular, optic atrophy represents the permanent loss of retinal ganglion cell axons in conjunction with retinal ganglion cell death. Optic atrophy should not be considered a diagnosis; it is a pathologic endpoint that is clinically discernible but does not imply cause. Optic atrophy may be from injury of the optic nerve head; however because of anterograde and retrograde degeneration, it may reflect upstream injury of the retinal ganglion cells or downstream injury of the posterior optic nerve, optic chiasm, or optic tract. Optic atrophy has been divided into primary and secondary varieties, and the distinction between them may have diagnostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sadun AA, Yanoff B, Fine BS. Pathology of the optic nerve. In: Duane TD, Jaeger EA, editors. Biomedical foundations of ophthalmology. Philadelphia: JB Lippincott; 1985. p. 1–31.

    Google Scholar 

  2. Walsh FB, Hoyt WF, editors. Clinical neuro-ophthalmology. 3rd ed. Baltimore: Williams & Wilkins; 1969.

    Google Scholar 

  3. Miller NR. Optic atrophy. In: Walsh FB, Hoyt WF, editors. Clinical neuro-ophthalmology. 4th ed. Baltimore: Williams & Wilkins; 1982. p. 329–42.

    Google Scholar 

  4. Sadun AA. Acquired mitochondrial impairment as a cause of optic nerve disease. Tr Am Soc. 1998;XCVI:881–923.

    Google Scholar 

  5. Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominanat optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26:211–5.

    Article  CAS  PubMed  Google Scholar 

  6. Ianchulev T, Kolin T, Moseley K, Sadun A. Optic nerve atrophy in propionic acidemia. Ophthalmology. 2003;110:1850–4.

    Article  PubMed  Google Scholar 

  7. Huizing M, Brooks BP, Anikster Y. Optic atrophies in metabolic disorders. Mol Genet Metab. 2005;86:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zuchner S, De Jonghe P, Jordanova A, et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol. 2006;59:276–81.

    Article  CAS  PubMed  Google Scholar 

  9. Tenhula W, Xu S, Madigan MC, et al. Morphometric comparisons of optic nerve axon loss in acquired immunodeficiency syndrome. Am J Ophthalmol. 1992;113:14.

    Article  CAS  PubMed  Google Scholar 

  10. Sadun AA, Pepose JS, Madigan MC, et al. AIDS-related optic neuropathy: a histological, virological and ultrastructural study. Graefes Arch Clin Exp Ophthalmol. 1995;233:387.

    Article  CAS  PubMed  Google Scholar 

  11. Sadun AA, Bassi C. Optic nerve damage in Alzheimer’s disease. Ophthalmology. 1990;97:9.

    Article  CAS  PubMed  Google Scholar 

  12. Sadun AA, Bassi CJ. The visual system in Alzheimer’s disease. In: Cohen B, Bodis-Wollner I, editors. Vision and the brain. New York: Raven; 1990. p. 331–47.

    Google Scholar 

  13. Asanad S, Ross-Cisneros FN, Nassisi M, Barron E, Karanjia R, Sadun AA. The retina in Alzheimer’s disease: histomorphometric analysis of an ophthalmologic biomarker. Invest Ophthalmol Vis Sci. 2019;60(5):1491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia Y, Simonett JM, Wang J, Hua X, Liu L, Hwang TS, et al. Wide-field OCT angiography investigation of the relationship between radial peripapillary capillary plexus density and nerve fiber layer thickness. Invest Ophthalmol Vis Sci. 2017;58(12):5188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson BM, Miao M, Sadun AA. Age-related decline of human optic nerve axon populations. Age. 1987;10:5.

    Article  Google Scholar 

  16. Sadun AA, Johnson B, Miao M. Axon caliber populations in the human optic nerve: changes with age and disease. Highlights in neuro-ophthalmology. Proceedings of the sixth meeting of the international neuro-ophthalmology society. Aeolus: Amsterdam; 1987. p. 15–20.

    Google Scholar 

  17. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453.

    Article  CAS  PubMed  Google Scholar 

  18. Sadun AA, Yanoff M. Pathology of the optic nerve. In: Duane TD, Jaeger EA, editors. Biomedical foundations of ophthalmology. New York: Harper & Row; 1985. p. 1–25.

    Google Scholar 

  19. Lee AG, Chau FY, Golnik KC, et al. The diagnostic yield of the evaluation for isolated unexplained optic atrophy. Ophthalmology. 2005;112:757–9.

    Article  PubMed  Google Scholar 

  20. Oluleye TS, Ajaiyeoba AI, Fafowora OF, et al. The aetiology of optic atrophy in Nigerians – a general hospital clinic study. Int J Clin Pract. 2005;59:950–2.

    Article  CAS  PubMed  Google Scholar 

  21. Lovasik JV, Gagnon M, Kergoat H. A novel noninvasive videographic method for quantifying changes in the chromaticity of the optic nerve head with changes in the intraocular pressure, pulsatile choroidal blood flow and visual neural function in humans. Surv Ophthalmol. 1994;38(Suppl):S35.

    Article  PubMed  Google Scholar 

  22. Quigley HA, Hohman RM, Addicks EM. Quantitative study of optic nerve head capillaries in experimental optic disc pallor. Am J Ophthalmol. 1982;93:689.

    Article  CAS  PubMed  Google Scholar 

  23. Frisen L, Claesson M. Narrowing of the retinal arterioles in descending optic atrophy: a quantitative clinical study. Ophthalmology. 1984;91:1342.

    Article  CAS  PubMed  Google Scholar 

  24. Sebag J, Delori FC, Feke GT, et al. Anterior optic nerve blood flow decreases in clinical neurogenic optic atrophy. Ophthalmology. 1986;93:858.

    Article  CAS  PubMed  Google Scholar 

  25. Sebag J, Delori FC, Feke GT, Weiter JJ. Effects of optic atrophy on retinal blood flow and oxygen saturation in humans. Arch Ophthalmol. 1989;107:222.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Frambach DA, Lee PP, Lpez PF. Disturbances of the macular choriocapillary circulation in a university-based ophthalmology referral practice. Ann Ophthalmol. 1996;28:215.

    Google Scholar 

  27. Quigley HA, Anderson DR. The histological basis of optic disc pallor. Am J Ophthalmol. 1977;83:709.

    Article  CAS  PubMed  Google Scholar 

  28. Walsh FB, Hoyt WF. Papilledema, optic neuritis, and optic atrophy: the optic disc in neurologic diagnosis. Clinical neuro-ophthalmology. 3rd ed. Baltimore: Williams & Wilkins; 1969. p. 631–41.

    Google Scholar 

  29. Kant A. The ophthalmoscopic evaluation of optic atrophy. Am J Ophthalmol. 1949;32:1479.

    Article  CAS  PubMed  Google Scholar 

  30. Safran AB, Lupolover Y, Berney J. Macular reflexes in optic atrophy. Am J Ophthalmol. 1984;98:494.

    Article  CAS  PubMed  Google Scholar 

  31. Lundstrom M, Frisen L. Atrophy of optic nerve fibres in compression of the chiasm: degree and distribution of ophthalmoscopic changes. Acta Ophthalmol Scand. 1976;54:623.

    Article  CAS  Google Scholar 

  32. Miller NR, Fine SL. The ocular fundus in neuro-ophthalmologic diagnosis. In: Sights and sounds in ophthalmology. St Louis: CV Mosby; 1976. p. 50–3.

    Google Scholar 

  33. Unsold R, Hoyt WF. Band atrophy of the optic nerve: the histology of temporal hemianopsia. Arch Ophthalmol. 1980;98:1637.

    Article  CAS  PubMed  Google Scholar 

  34. Kanamori A, Nakamura M, Matsui N, et al. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology. 2004;111:2278–83.

    Article  PubMed  Google Scholar 

  35. Mehta JS, Plant GT. OCT and band atrophy correlation. Ophthalmology. 2005;112:2055–6. author reply 2056–2057

    Article  PubMed  Google Scholar 

  36. Blazar HA, Scheie HG. Pseudoglaucoma. Arch Ophthalmol. 1950;44:499.

    Article  CAS  Google Scholar 

  37. Quigley H, Anderson DR. Cupping of the optic disc in ischemic optic neuropathy. Trans Am Acad Ophthalmol Otolaryngol. 1977;83:755.

    CAS  Google Scholar 

  38. Trobe JD, Glaser JS, Cassady JC. Optic atrophy: differential diagnosis by fundus observation alone. Arch Ophthalmol. 1980;98:1040.

    Article  CAS  PubMed  Google Scholar 

  39. Behrens MM. Other optic nerve diseases. In: Lessell S, Van Dalen JTW, editors. Current neuro-ophthalmology. Chicago: Year Book Medical; 1988. p. 33–52.

    Google Scholar 

  40. Balazi AG, Rootman J, Drance SM, et al. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol. 1984;97:760.

    Article  Google Scholar 

  41. Trobe JD, Glaser JS, Cassady J, et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046.

    Article  CAS  PubMed  Google Scholar 

  42. Mashima Y, Oshitarik IY, et al. High-resolution magnetic resonance imaging of the intraorbital optic nerve and subarachnoid space in patients with papilledema and optic atrophy. Arch Ophthalmol. 1996;114:1197.

    Article  CAS  PubMed  Google Scholar 

  43. Kim JW, Rizzo JF, Lessell S. Delayed visual decline in patients with ‘stable’ optic neuropathy. Arch Ophthalmol. 2005;123(6):785–8.

    Article  PubMed  Google Scholar 

  44. Quigley H, Anderson D. The histologic basis of optic disc pallor in experimental optic atrophy. J Ophthalmol. 1977;83:709.

    CAS  Google Scholar 

  45. Henkind P, Charles NC, Pearson J. Histopathology of ischemic optic neuropathy. Am J Ophthalmol. 1970;69:78.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson DR. Ascending and descending optic atrophy produced experimentally in squirrel monkeys. Am J Ophthalmol. 1973;76:693.

    Article  CAS  PubMed  Google Scholar 

  47. Radius RL, Anderson DR. Retinal ganglion cell degeneration in experimental optic atrophy. Am J Ophthalmol. 1978;86:673.

    Article  CAS  PubMed  Google Scholar 

  48. Sadun AA, Smythe BA, Schaechter JD. Optic neuritis or ophthalmic artery aneurysm? Case presentation with histopathologic documentation utilizing a new staining method. J Clin Neuroophthalmol. 1984;4:265–73.

    CAS  PubMed  Google Scholar 

  49. Smith LE, Sadun AA, Kenyon KR. Transsynaptic changes in the human visual system: atrophy versus degeneration. Invest Ophthalmol Vis Sci. 1982;22(Suppl):76.

    Google Scholar 

  50. Beatty B, Sadun A, Smith L, Richardson E. Direct demonstration of transsynaptic degeneration in the human visual system: a comparison of retrograde and anterograde changes. J Neurol Neurosurg Psychiatry. 1982;45:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Quigley HA, Davis EB, Anderson DR. Descending optic nerve degeneration in primates. Invest Ophthalmol Vis Sci. 1977;16:841.

    CAS  PubMed  Google Scholar 

  52. Van Buren JM. Transsynaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry. 1963;26:402.

    Article  PubMed Central  Google Scholar 

  53. Weller RE, Kaas JH, Ward J. Preservation of retinal ganglion cells and normal patterns of retinogeniculate projections in prosimian primates with long-term ablations of striate cortex. Invest Ophthalmol Vis Sci. 1981;20:139.

    CAS  PubMed  Google Scholar 

  54. Miller NR, Newman NM. Transsynaptic degeneration. Arch Ophthalmol. 1981;99:1654.

    Article  CAS  PubMed  Google Scholar 

  55. Weller RE, Kaas JH. Loss of retinal ganglion cells and altered retinogeniculate projections in monkeys with striate cortex lesions. Invest Ophthalmol Vis Sci. 1980;19(ARVO Suppl):2.

    Google Scholar 

  56. Kupersmith MJ, Vargas M, Hoyt WF, Berenstein A. Optic tract atrophy with cerebral arteriovenous malformations: direct and transsynaptic degeneration. Neurology. 1994;44(1):80–3.

    Article  CAS  PubMed  Google Scholar 

  57. Hoyt WF. Ophthalmoscopy of the retinal nerve fiber layer in neuroophthalmologic diagnosis. Aust J Ophthalmol. 1976;4:14.

    Article  Google Scholar 

  58. Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Investig Ophthalmol. 1973;12:814.

    CAS  Google Scholar 

  59. Sadun AA, Martone JF, Muci-Mendoza R, et al. Epidemic optic neuropathy in Cuba: eye findings. Arch Ophthalmol. 1994;112:691.

    Article  CAS  PubMed  Google Scholar 

  60. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III: quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema and toxic neuropathy. Arch Ophthalmol. 1982;100:135.

    Article  CAS  PubMed  Google Scholar 

  61. Guillery RW. Light and electron-microscopical studies of normal and degenerating axons. In: Nauta WJH, Ebbesson SOE, editors. Contemporary research methods in neuroanatomy. New York: Springer; 1970. p. 77–105.

    Chapter  Google Scholar 

  62. Sadun AA, Smith LEH, Kenyon KR. A new method for tracing visual pathways in man. J Neuropathol Exp Neurol. 1983;42:200.

    Article  CAS  PubMed  Google Scholar 

  63. Sadun AA. Neuroanatomy of the human visual system. I: retinal projections to the LGN and pretectum as demonstrated with a new stain. Neuroophthalmology. 1986;6:353.

    Article  Google Scholar 

  64. Johnson BM, Sadun AA. Ultrastructural and paraphenylene studies of degeneration in the primate visual system: degenerative remnants persist for much longer than expected. J Electron Microsc Tech. 1988;8:179.

    Article  CAS  PubMed  Google Scholar 

  65. Sadun AA, Rismondo V. Evaluation of the swollen disc. In: Schachat AP, editor. Current practice in ophthalmology. Boston: Mosby-Year Book; 1992. p. 177–86.

    Google Scholar 

  66. Miller NR. Papilledema: a sign of increased intracranial pressure. In: Walsh FB, Hoyt WF, editors. Clinical neuro-ophthalmology. 4th ed. Baltimore: Williams & Wilkins; 1982. p. 175–211.

    Google Scholar 

  67. Glaser J. Neuro-ophthalmology. Philadelphia: JB Lippincott; 1990.

    Google Scholar 

  68. Stominger MB, Liu GT, Schatz NJ. Optic disc swelling and abducens palsies associated with OKT3. Am J Ophthalmol. 1995;119:664.

    Article  Google Scholar 

  69. Brady ST, Lasek RJ, Allen RD. Video microscopy for fast axonal transport of extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil. 1985;5:81.

    Article  CAS  PubMed  Google Scholar 

  70. Minckler DS, Bunt AH. Axoplasmic transport in ocular hypotony and papilledema in the monkey. Arch Ophthalmol. 1977;95:1430.

    Article  CAS  PubMed  Google Scholar 

  71. Tso MOM, Hayreh SS. Optic disc edema in raised intracranial pressure. IV: axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95:1458.

    Article  CAS  PubMed  Google Scholar 

  72. Hayreh MS, Hayreh SS. Optic disc edema in raised intracranial pressure. I: evolution and resolution. Arch Ophthalmol. 1977;95:1237.

    Article  CAS  PubMed  Google Scholar 

  73. Tso MOM, Hayreh SS. Optic disc edema in raised intracranial pressure. III: a pathologic study of experimental papilledema. Arch Ophthalmol. 1977;95:1448.

    Article  CAS  PubMed  Google Scholar 

  74. Carta A, Favilla S, Prato M, Bianchi-Marzoli S, Sadun AA, Mora P. Accuracy of funduscopy to identify true edema versus pseudoedema of the optic disc. Invest Ophthalmol Vis Sci. 2012;53(1):1–6.

    Article  PubMed  Google Scholar 

  75. Frisen L. Swelling of the optic nerve head: a staging scheme. J Neurol Neurosurg Psychiatry. 1982;45:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hoyt WF, Beeston D. The ocular fundus in neurologic disease. CV Mosby: St Louis; 1966.

    Google Scholar 

  77. Hoyt WF, Knight CL. Comparison of congenital disc blurring and incipient papilledema in red-free light – a photographic study. Investig Ophthalmol. 1973;12:241.

    CAS  Google Scholar 

  78. Keane JR. Papilledema with unusual ocular hemorrhages. Arch Ophthalmol. 1981;99:262.

    Article  CAS  PubMed  Google Scholar 

  79. Morris AT, Sanders MD. Macular changes resulting from papilloedema. Br J Ophthalmol. 1980;64:211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gittinger JW, Asdourian GK. Macular abnormalities in papilledema from pseudotumor cerebri. Ophthalmology. 1989;96:192.

    Article  PubMed  Google Scholar 

  81. Bird AC, Sanders MD. Choroidal folds in association with papilloedema. Br J Ophthalmol. 1973;57:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eggers HM, Sanders MD. Acquired optociliary shunt vessels in papilloedema. Br J Ophthalmol. 1980;64:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Minckler DS, Tso MOM. A light microscopic, autoradiographic study of axoplasmic transport in the normal rhesus optic nerve head. Am J Ophthalmol. 1976;82:1.

    Article  CAS  PubMed  Google Scholar 

  84. Sadun AA, Currie JN, Lessell S. Transient visual obscurations with elevated optic discs. Ann Neurol. 1984;16:489.

    Article  CAS  PubMed  Google Scholar 

  85. Smith TJ, Baker RS. Perimetric findings in pseudotumor cerebri using automated techniques. Ophthalmology. 1986;93:887.

    Article  CAS  PubMed  Google Scholar 

  86. Wall M. Contrast sensitivity testing in pseudotumor cerebri. Ophthalmology. 1986;93:4.

    Article  CAS  PubMed  Google Scholar 

  87. Menke MN, Feke GT, Trempe CL. OCT measurements in patients with optic disc edema. Invest Ophthalmol Vis Sci. 2005;46(10):3807–11.

    Article  PubMed  Google Scholar 

  88. Yip LW, Yong VK, St H, et al. Optical coherence tomography of optic disc swelling in acute primary angle-closure glaucoma. Arch Ophthalmol. 2005;123(4):567–9.

    Article  PubMed  Google Scholar 

  89. Savini G, Zanini M, Carelli V, et al. Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study. Br J Ophthalmol. 2005;89(4):489–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karam EZ, Hedges TR. Optical coherence tomography of the retinal nerve fire layer in mild papilledema and pseudopapilloedema. Br J Ophthalmol. 2005;89(3):294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mehta JS, Plant GT, Acheson JF. Twin and triple peaks papilledema. Ophthalmology. 2005;112(7):1299–301.

    Article  PubMed  Google Scholar 

  92. Reifler DM, Kaufman DI. Optic disc drusen and pseudotumor cerebri. Am J Ophthalmol. 1988;106:95.

    Article  CAS  PubMed  Google Scholar 

  93. Beck RW, Corbett JJ, Thompson HS, Sergott RC. Decreased visual acuity from optic disc drusen. Arch Ophthalmol. 1985;103:1115.

    Article  Google Scholar 

  94. Chang MY, Velez FG, Demer JL, Bonelli L, Quiros PA, Arnold AC, et al. Accuracy of diagnostic imaging modalities for classifying pediatric eyes as papilledema versus pseudopapilledema. Ophthalmology. 2017;124(12):1839–48.

    Article  PubMed  Google Scholar 

  95. Pineles SL, Arnold AC. Fluorescein angiographic identification of optic disc drusen with and without optic disc edema. J Neuroophthalmol. 2012;32(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brown GC, Tasman WS. Congenital anomalies of the optic disc. New York: Grune & Stratton; 1983. p. 95–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karanjia, R., Sadun, A.A. (2021). Optic Atrophy and Papilledema. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics