Skip to main content

Abstract

While sensitivity to the perception of “anomalous” disks can be relatively quickly acquired with experience, more essential is recognizing and understanding several specific key distinguishing traits in order to correctly categorize optic disk anomalies and make the appropriate inferences.

Accurate identification of the various congenital optic disk anomalies can lead to a specific targeted screening for associated ocular, neurologic, and systemic diseases. Correlations first appreciated a few decades ago, and others made, thereafter, are reincorporated and understood anew. The accumulated knowledge, reassessed and reorganized, integrating many seemingly disparate findings since the last version of this chapter written in 2008, now brings a newfound order and coherence to the subject of congenital disk anomalies described herein. Such modern perspective with improved understanding allows heretofore-overlooked issues to receive appropriate attention.

Up-to-date knowledge with emphasis placed on understanding key distinguishing features can lead not only to better ocular but also to improved systemic patient care. If a disk cannot be fitted into a known category, it is better to term the disk as simply “dysplastic,” rather than the frequently misappropriated terms of “coloboma,” “atypical coloboma,” or “colobomatous,” which has led to and continues to engender pathogenetic confusion.

Because of the limited penetrance of the near-infrared OCT light beam into the disk laminar tissue, as well as the large range of physiologic variability of optic disks, the utility of OCT in the diagnosis of congenital disk disorder remains somewhat restricted (Jeng-Miller et al., Curr Opin Ophthalmol 28:579–86, 2017). However, OCT may still provide valuable information regarding laminar defects and surrounding retina, particularly when secondary detachments may have occurred (Cennamo et al., Ophthalmology 117(6):1269–73, 2010; Chang et al., Eye (London) 26(4):494–500, 2012; Katome et al., Eye (London) 27(11):1325–6, 2013; Horton and Barkovich, J Neuroophthalmol 37(4):401–2, 2017). Subtle forms of optic nerve hypoplasia may also be more easily identified via OCT than by ophthalmoscopy (Unoki et al., Br J Ophthalmol 86(8):910–4, 2002).

More recently, peripheral or wide-angle fundus imaging, particularly with fluorescein angiography, has also disclosed previously unappreciated peripherally associated abnormalities of the retina (Parsa et al., Ophthalmology 108(4):738–49, 2001; Shapiro et al., Ophthalmology 120(3):607–15, 2013).

Nevertheless, it is the ophthalmoscopic appearance of the optic disk itself, including with the use of the direct ophthalmoscope that provides the highest magnification, that is particularly useful in clinical diagnosis, all the more so for those in the pediatric age group, unable to sit for less portable imaging devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Provis JM, van Driel D, Billson FA, Russell P. Human fetal optic nerve: overproduction and elimination of retinal axons during development. J Comp Neurol. 1985;238(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia ML, Ty EB, Taban M, David Rothner A, Rogers D, Traboulsi EI. Systemic and ocular findings in 100 patients with optic nerve hypoplasia. J Child Neurol. 2006;21(11):949–56.

    Article  PubMed  Google Scholar 

  3. Hotchkiss ML, Green WR. Optic nerve aplasia and hypoplasia. J Pediatr Ophthalmol Strabismus. 1979;16(4):225–40.

    Article  CAS  PubMed  Google Scholar 

  4. Petersen RA, Walton DS. Optic nerve hypoplasia with good visual acuity and visual field defects: a study of children of diabetic mothers. Arch Ophthalmol. 1977;95(2):254–8.

    Article  CAS  PubMed  Google Scholar 

  5. Borchert M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuroophthalmol. 2012;32(1):58–67.

    Article  PubMed  Google Scholar 

  6. Hoyt WF, Kaplan SL, Grumbach MM, Glaser JS. Septo-optic dysplasia and pituitary dwarfism. Lancet. 1970;1(7652):893–4.

    Article  CAS  PubMed  Google Scholar 

  7. Lubinsky MS. Hypothesis: septo-optic dysplasia is a vascular disruption sequence. Am J Med Genet. 1997;69(3):235–6.

    Article  CAS  PubMed  Google Scholar 

  8. Mosier MA, Lieberman MF, Green WR, Knox DL. Hypoplasia of the optic nerve. Arch Ophthalmol. 1978;96(8):1437–42.

    Article  CAS  PubMed  Google Scholar 

  9. Parsa CF, Robert MP. Thromboembolism and congenital malformations: from Duane syndrome to thalidomide embryopathy. JAMA Ophthalmol. 2013;131(4):439–47.

    Article  CAS  PubMed  Google Scholar 

  10. Li ZY, Possin DE, Milam AH. Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology. 1995;102(5):805–16.

    Article  CAS  PubMed  Google Scholar 

  11. Olsen TW, Frayer WC, Myers FL, Davis MD, Albert DM. Idiopathic reactive hyperplasia of the retinal pigment epithelium. Arch Ophthalmol. 1999;117(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  12. Ryabets-Lienhard A, Stewart C, Borchert M, Geffner ME. The optic nerve hypoplasia spectrum: review of the literature and clinical guidelines. Adv Pediatr Infect Dis. 2016;63(1):127–46.

    Google Scholar 

  13. Ramakrishnaiah RH, Shelton JB, Glasier CM, Phillips PH. Reliability of magnetic resonance imaging for the detection of hypopituitarism in children with optic nerve hypoplasia. Ophthalmology. 2014;121(1):387–91.

    Article  PubMed  Google Scholar 

  14. Hodgkins P, Lees M, Lawson J, Reardon W, Leitch J, Thorogood P, et al. Optic disc anomalies and frontonasal dysplasia. Br J Ophthalmol. 1998;82(3):290–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Brodsky MC. Optic nerve hypoplasia: “neural guidance” and the role of mentorship. J Neuroophthalmol. 2020;40(Suppl 1):S21–s8.

    Article  PubMed  Google Scholar 

  16. Garcia-Filion P, Fink C, Geffner ME, Borchert M. Optic nerve hypoplasia in North America: a re-appraisal of perinatal risk factors. Acta Ophthalmol. 2010;88(5):527–34.

    Article  PubMed  Google Scholar 

  17. Hoyt CS, Good WV. Do we really understand the difference between optic nerve hypoplasia and atrophy? Eye (Lond). 1992;6(Pt 2):201–4.

    Article  Google Scholar 

  18. Hoyt WF, Luis O. The primate chiasm. Details of visual fiber organization studied by silver impregnation techniques. Arch Ophthalmol. 1963;70:69–85.

    Article  CAS  PubMed  Google Scholar 

  19. Hoyt CS. Brain injury and the eye. Eye (Lond). 2007;21(10):1285–9.

    Article  CAS  Google Scholar 

  20. Pilat A, Sibley D, McLean RJ, Proudlock FA, Gottlob I. High-resolution imaging of the optic nerve and retina in optic nerve hypoplasia. Ophthalmology. 2015;122(7):1330–9.

    Article  PubMed  Google Scholar 

  21. Brodsky MC, Glasier CM. Optic nerve hypoplasia. Clinical significance of associated central nervous system abnormalities on magnetic resonance imaging. Arch Ophthalmol. 1993;111(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  22. Metry DW, Dowd CF, Barkovich AJ, Frieden IJ. The many faces of PHACE syndrome. J Pediatr. 2001;139(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  23. Ask-Upmark E. On the laterality of cerebral embolies. Acta Med Scand. 1955;152(6):433–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kim RY, Hoyt WF, Lessell S, Narahara MH. Superior segmental optic hypoplasia. A sign of maternal diabetes. Arch Ophthalmol. 1989;107(9):1312–5.

    Article  CAS  PubMed  Google Scholar 

  25. Landau K, Bajka JD, Kirchschläger BM. Topless optic disks in children of mothers with type I diabetes mellitus. Am J Ophthalmol. 1998;125(5):605–11.

    Article  CAS  PubMed  Google Scholar 

  26. Unoki K, Ohba N, Hoyt WF. Optical coherence tomography of superior segmental optic hypoplasia. Br J Ophthalmol. 2002;86(8):910–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hashimoto M, Ohtsuka K, Nakagawa T, Hoyt WF. Topless optic disk syndrome without maternal diabetes mellitus. Am J Ophthalmol. 1999;128(1):111–2.

    Article  CAS  PubMed  Google Scholar 

  28. Lee EJ, Lee KM, Lee SH, Kim TW. Comparison of the deep optic nerve structures in superior segmental optic nerve hypoplasia and primary open-angle glaucoma. J Glaucoma. 2016;25(8):648–56.

    Article  PubMed  Google Scholar 

  29. Hayashi K, Tomidokoro A, Konno S, Mayama C, Aihara M, Araie M. Evaluation of optic nerve head configurations of superior segmental optic hypoplasia by spectral-domain optical coherence tomography. Br J Ophthalmol. 2010;94(6):768–72.

    Article  PubMed  Google Scholar 

  30. Tinelli F, Guzzetta A, Bertini C, Ricci D, Mercuri E, Ladavas E, et al. Greater sparing of visual search abilities in children after congenital rather than acquired focal brain damage. Neurorehabil Neural Repair. 2011;25(8):721–8.

    Article  PubMed  Google Scholar 

  31. Jacobsen L, Hellstrom A, Flodmark O. Large cups in normal-sized optic discs. Arch Ophthalmol 1997;115:1263–1269.

    Google Scholar 

  32. Gregory-Roberts EM, Mateo C, Corcóstegui B, Schiff WM, Chang LK, Quiroz-Mercado H, et al. Optic disk pit morphology and retinal detachment: optical coherence tomography with intraoperative correlation. Retina. 2013;33(2):363–70.

    Article  PubMed  Google Scholar 

  33. Irvine AR, Crawford JB, Sullivan JH. The pathogenesis of retinal detachment with morning glory disc and optic pit. Retina. 1986;6(3):146–50.

    Article  CAS  PubMed  Google Scholar 

  34. Lin CC, Tso MO, Vygantas CM. Coloboma of optic nerve associated with serous maculopathy. A clinicopathologic correlative study. Arch Ophthalmol. 1984;102(11):1651–4.

    Article  CAS  PubMed  Google Scholar 

  35. Manschot WA. Morning glory syndrome: a histopathological study. Br J Ophthalmol. 1990;74(1):56–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Parsa CF, Goldberg MF, Hunter DG. Papillorenal syndrome in a Brazilian family. Arch Ophthalmol. 2002;120(12):1772–3.

    Google Scholar 

  37. McHugh JA, DʼAntona L, Toma AK, Bremner FD. Spontaneous venous pulsations detected with infrared videography. J Neuroophthalmol. 2020;40(2):174–7.

    Article  PubMed  Google Scholar 

  38. Katome T, Mitamura Y, Hotta F, Mino A, Naito T. Swept-source optical coherence tomography identifies connection between vitreous cavity and retrobulbar subarachnoid space in patient with optic disc pit. Eye. 2013;27(11):1325–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cogan DG. Coloboma of optic nerve with overlay of peripapillary retina. Br J Ophthalmol. 1978;62(6):347–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Willis F, Zimmerman LE, O’Grady R, Smith RS, Crawford B. Heterotopic adipose tissue and smooth muscle in the optic disc: association with isolated colobomas. Arch Ophthalmol. 1972;88(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  41. Roth AM, Foos RY. Surface structure of the optic nerve head. 1. Epipapillary membranes. Am J Ophthalmol. 1972;74(5):977–85.

    Article  CAS  PubMed  Google Scholar 

  42. Iftikhar M, Shah SMA, Goldberg MF. A case of optic disc pit maculopathy observed without intervention for 6 years. Ophthalmol Retina. 2019;3(2):195–7.

    Article  PubMed  Google Scholar 

  43. Lincoff H, Lopez R, Kreissig I, Yannuzzi L, Cox M, Burton T. Retinoschisis associated with optic nerve pits. 1988. Retina. 2012;32(Suppl 1):61–7.

    Article  PubMed  Google Scholar 

  44. Chang S, Gregory-Roberts E, Chen R. Retinal detachment associated with optic disc colobomas and morning glory syndrome. Eye. 2012;26(4):494–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hirakata A, Okada AA, Hida T. Long-term results of vitrectomy without laser treatment for macular detachment associated with an optic disc pit. Ophthalmology. 2005;112(8):1430–5.

    Article  PubMed  Google Scholar 

  46. Gass JD. Serous detachment of the macula. Secondary to congenital pit of the optic nervehead. Am J Ophthalmol. 1969;67(6):821–41.

    Article  CAS  PubMed  Google Scholar 

  47. Brodsky MC. Causality in the systems era of pediatric ophthalmology: the Buddha’s smile. Am J Ophthalmol. 2010;150(3):305–9.

    Article  PubMed  Google Scholar 

  48. Manor RS. Temporal field defects due to nasal tilting of discs. Ophthalmologica. 1974;168(4):269–81.

    Article  CAS  PubMed  Google Scholar 

  49. Witmer MT, Margo CE, Drucker M. Tilted optic disks. Surv Ophthalmol. 2010;55(5):403–28.

    Article  PubMed  Google Scholar 

  50. Young SE, Walsh FB, Knox DL. The tilted disk syndrome. Am J Ophthalmol. 1976;82(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  51. Seko Y, Tanaka Y, Tokoro T. Scleral cell growth is influenced by retinal pigment epithelium in vitro. Graefes Arch Clin Exp Ophthalmol. 1994;232(9):545–52.

    Article  CAS  PubMed  Google Scholar 

  52. Rymer J, Wildsoet CF. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review. Vis Neurosci. 2005;22(3):251–61.

    Article  PubMed  Google Scholar 

  53. Haden HC. Development of the ectodermal framework of the optic nerve, with special reference to the glial lamina cribosa. Arch Ophthalmol. 1948;40(1):78.

    Article  CAS  Google Scholar 

  54. Swan KC, Wilkins JH. Extraocular muscle surgery in early infancy – anatomical factors. J Pediatr Ophthalmol Strabismus. 1984;21(2):44–9.

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Liu G, Wang D, Yuan G, Hou Y, Wang J. The embryonic development of the human lamina cribrosa. Chin Med J. 1997;110(12):946–9.

    CAS  PubMed  Google Scholar 

  56. Brodsky MC: Congenital optic nerve anomalies. In: Pediatric neuro-ophthalmology, 3rd edn. New York, Springer. 2016;100–1.

    Google Scholar 

  57. Jain N, Johnson MW. Pathogenesis and treatment of maculopathy associated with cavitary optic disc anomalies. Am J Ophthalmol. 2014;158(3):423–35.

    Article  PubMed  Google Scholar 

  58. Cennamo GMD, de Crecchio GMD, Iaccarino GMD, Forte RMD, Cennamo GMD. Evaluation of morning glory syndrome with spectral optical coherence tomography and echography. Ophthalmology. 2010;117(6):1269–73.

    Article  PubMed  Google Scholar 

  59. Horton JC, Barkovich AJ. Bilateral optic disc pits with posterior pituitary Ectopia. J Neuroophthalmol. 2017;37(4):401–2.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Monteiro MLR. The retinal nerve fiber layer: how William F. Hoyt opened our eyes to it. J Neuroophthalmol. 2020;40(Suppl 1):S35–s42.

    Article  PubMed  Google Scholar 

  61. Brodsky MC, Hoyt WF, Hoyt CS, Miller NR, Lam BL. Atypical retinochoroidal coloboma in patients with dysplastic optic discs and transsphenoidal encephalocele. Arch Ophthalmol. 1995;113(5):624–8.

    Article  CAS  PubMed  Google Scholar 

  62. Lees MM, Hodgkins P, Reardon W, Taylor D, Stanhope R, Jones B, et al. Frontonasal dysplasia with optic disc anomalies and other midline craniofacial defects: a report of six cases. Clin Dysmorphol. 1998;7(3):157–62.

    Article  CAS  PubMed  Google Scholar 

  63. Walsh FB, Hoyt WF. Clinical neuro-ophthalmology. Volume 1, 3rd ed, Baltimore: Williams and Wilkins. 1969;671–3.

    Google Scholar 

  64. Kindler P. Morning glory syndrome: unusual congenital optic disk anomaly. Am J Ophthalmol. 1970;69(3):376–84.

    Article  CAS  PubMed  Google Scholar 

  65. Dempster AG, Lee WR, Forrester JV, McCreath GT. The ‘morning glory syndrome’ – a mesodermal defect? Ophthalmologica. 1983;187(4):222–30.

    Article  CAS  PubMed  Google Scholar 

  66. Goldhammer Y, Smith JL. Optic nerve anomalies in basal encephalocele. Arch Ophthalmol. 1975;93(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  67. Jung J, Brodsky MC. Megalopapilla simulating pediatric optic atrophy. JAMA Ophthalmol. 2016;134(5):e155037.

    Article  PubMed  Google Scholar 

  68. Goldberg MF. Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 1997;124(5):587–626.

    Article  CAS  PubMed  Google Scholar 

  69. Mann I. The development of the human eye. Cambridge: Cambridge University Press; 1928.

    Google Scholar 

  70. Parsa CF. Visual function and optic pathway glioma: a critical response-reply. JAMA Ophthalmol. 2013;131(1):121–4.

    Article  PubMed  Google Scholar 

  71. Brodsky MC, Wilson RS. Retinal arteriovenous communications in the morning glory disc anomaly. Arch Ophthalmol. 1995;113(4):410–1.

    Article  CAS  PubMed  Google Scholar 

  72. Traboulsi EI, O’Neill JF. The spectrum in the morphology of the so-called “morning glory disc anomaly”. J Pediatr Ophthalmol Strabismus. 1988;25(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  73. She K, Zhang Q, Fei P, Peng J, Lyu J, Li Y, et al. Peripheral retinal nonperfusion in pediatric patients with morning glory syndrome. Ophthalmic Surg Lasers Imaging Retina. 2018;49(9):674–9.

    Article  PubMed  Google Scholar 

  74. Muci-Mendoza R, Parsa CF, Hoyt WF. Development of cilioretinal collaterals in a patient with calcific valvular heart disease. Arch Ophthalmol. 1998;116(2):255.

    Article  CAS  PubMed  Google Scholar 

  75. Nettleship E. Unusual Appearances in a case of Retinal Embolism about 30 hours after its occurrence. Festscher Z Feier d 70 Geburtstages v H v Helmholtz. 1891;7:7–8.

    Google Scholar 

  76. Ragge NK, Hoyt WF. Nettleship collaterals: circumpapillary cilioretinal anastomoses after occlusion of the central retinal artery. Br J Ophthalmol. 1992;76(3):186–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Parsa CF, Silva ED, Sundin OH, Goldberg MF, De Jong MR, Sunness JS, et al. Redefining papillorenal syndrome: an underdiagnosed cause of ocular and renal morbidity. Ophthalmology. 2001;108(4):738–49.

    Article  CAS  PubMed  Google Scholar 

  78. Brodsky MC, Parsa CF. The moyamoya optic disc. JAMA Ophthalmol. 2015;133(2):164.

    Article  PubMed  Google Scholar 

  79. Parsa CF, Cheeseman EW Jr, Maumenee IH. Demonstration of exclusive cilioretinal vascular system supplying the retina in man: vacant discs. Trans Am Ophthalmol Soc. 1998;96:95–106; discussion 106–9.

    Google Scholar 

  80. Pau H. Handmann’s optic nerve anomaly and “morning glory” syndrome (author’s transl). Klin Monatsbl Augenheilkd. 1980;176(5):745–51.

    Article  CAS  PubMed  Google Scholar 

  81. Rieger G. On the clinical picture of Handmann’s anomaly of the optic nerve Morning glory syndrome? (author’s transl). Klin Monatsbl Augenheilkd. 1977;170(5):697–706.

    CAS  PubMed  Google Scholar 

  82. Dedhia CJ, Gogri PY, Rani PK. Rare bilateral presentation of morning glory disc anomaly. BMJ Case Rep. 2016;2016:bcr2016215846. https://doi.org/10.1136/bcr-2016-215846. PMID: 27571914; PMCID: PMC5015147.

  83. Handmann M. Erbliche, vermutlich angeborene zentrale gliöse Entartung des Sehnerven mit besonderer Beteiligung der Zentralgefäße. Klin Monatsbl f Augenh. 1929;83:145–52.

    Google Scholar 

  84. Steel DHW, Suleman J, Murphy DC, Song A, Dodds S, Rees J. Optic disc pit maculopathy: A two-year nationwide prospective population-based study. Ophthalmology. 2018;125(11):1757–64.

    Article  PubMed  Google Scholar 

  85. Pedler C. Unusual coloboma of the optic nerve entrance. Br J Ophthalmol. 1961;45(12):803–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Whinery RD, Blodi FC. Hypoplasia of the optic nerve – a clinical and histopathologic correlation. Trans Am Acad Ophthalmol Otolaryngol. 1963;67:733–8.

    CAS  PubMed  Google Scholar 

  87. Harasymowycz P, Chevrette L, Décarie JC, Hanna N, Aroichane M, Jacob JL, et al. Morning glory syndrome: clinical, computerized tomographic, and ultrasonographic findings. J Pediatr Ophthalmol Strabismus. 2005;42(5):290–5.

    Article  PubMed  Google Scholar 

  88. Jiang H, Liang Y, Long K, Luo J. Postoperative follow-up of a case of atypical morning glory syndrome associated with persistent fetal vasculature. BMC Ophthalmol. 2019;19(1):150.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Ceynowa DJ, Wickström R, Olsson M, Ek U, Eriksson U, Wiberg MK, et al. Morning glory disc anomaly in childhood – a population-based study. Acta Ophthalmol. 2015;93(7):626–34.

    Article  PubMed  Google Scholar 

  90. De Laey JJ, Ryckaert S, Leys A. The ‘morning glory’ syndrome. Ophthalmic Paediatr Genet. 1985;5(1–2):117–24.

    Article  PubMed  Google Scholar 

  91. Stefanko NS, Cossio ML, Powell J, Blei F, Davies OMT, Frieden IJ, et al. Natural history of PHACE syndrome: a survey of adults with PHACE. Pediatr Dermatol. 2019;36(5):618–22.

    Article  PubMed  Google Scholar 

  92. Kiratli H, Bozkurt B, Mocan C. Peripapillary staphyloma associated with orofacial capillary hemangioma. Ophthalmic Genet. 2001;22(4):249–53.

    Article  CAS  PubMed  Google Scholar 

  93. Kniestedt C, Landau K, Brodsky MC, North P, Waner M. Infantile orofacial hemangioma with ipsilateral peripapillary excavation in girls: a variant of the PHACE syndrome. Arch Ophthalmol. 2004;122(3):413–5.

    Article  PubMed  Google Scholar 

  94. Massaro M, Thorarensen O, Liu GT, Maguire AM, Zimmerman RA, Brodsky MC. Morning glory disc anomaly and moyamoya vessels. Arch Ophthalmol. 1998;116(2):253–4.

    CAS  PubMed  Google Scholar 

  95. Pascual-Castroviejo I. The association of extracranial and intracranial vascular malformations in children. Can J Neurol Sci. 1985;12(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  96. Brodsky MC. Congenital optic nerve anomalies. Papillorenal syndrome (the PARSA optic disc). In: Pediatric neuro-ophthalmology. 3rd ed. New York: Springer. 2016;99–100.

    Google Scholar 

  97. Murphy MA, Perlman EM, Rogg JM, Easton JD, Schuman JS. Reversible carotid artery narrowing in morning glory disc anomaly. J Neuroophthalmol. 2005;25(3):198–201.

    Article  PubMed  Google Scholar 

  98. Robert MP, Boddaert N, Kossorotoff M, Nguyen DT, Bremond-Gignac D. Vascular abnormalities associated with morning glory disk anomaly are not moyamoya. Difference between congenital and acquired. Invest Ophthalmol Vis Sci. 2019;60:3620.

    Google Scholar 

  99. Mohammed SN, Swan MC, Wall SA, Wilkie AO. Monozygotic twins discordant for frontonasal malformation. Am J Med Genet A. 2004;130a(4):384–8.

    Article  PubMed  Google Scholar 

  100. Flageul B, Wallach D, Cavelier-Balloy B, Bachelez H, Carsuzaa F, Dubertret L. Thalidomide and thrombosis. Ann Dermatol Venereol. 2000;127(2):171–4.

    CAS  PubMed  Google Scholar 

  101. Chang S, Haik BG, Ellsworth RM, St Louis L, Berrocal JA. Treatment of total retinal detachment in morning glory syndrome. Am J Ophthalmol. 1984;97(5):596–600.

    Article  CAS  PubMed  Google Scholar 

  102. Fajgenbaum MAP, Antonakis SN, Membrey L, Laidlaw DA. Acute retinal detachment induced by the Valsalva manoeuvre in morning glory disc anomaly. BMJ Case Rep. 2018;2018:bcr2017223131. https://doi.org/10.1136/bcr-2017-223131. PMID: 29374647; PMCID: PMC5786901.

  103. Haik BG, Greenstein SH, Smith ME, Abramson DH, Ellsworth RM. Retinal detachment in the morning glory anomaly. Ophthalmology. 1984;91(12):1638–47.

    Article  CAS  PubMed  Google Scholar 

  104. Naseripour M, Ghasempour A, Falavarjani KG, Sanjari MS, Yousefi M. Perfluorocarbon liquid migration into the subarachnoid space in a patient with morning glory syndrome. J Curr Ophthalmol. 2015;27(1–2):60–2.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Hayreh SS. The 1994 Von Sallman Lecture. The optic nerve head circulation in health and disease. Exp Eye Res. 1995;61(3):259–72.

    Article  CAS  PubMed  Google Scholar 

  106. Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. 3. Effects on the optic nerve head. Br J Ophthalmol. 1972;56(10):754–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Burvenich H. Peripapillary staphyloma and optical pit with serous detachment of the macula. Bull Soc Belge Ophtalmol. 1981;193:143–6.

    CAS  PubMed  Google Scholar 

  108. Foster JA, Lam S. Contractile optic disc coloboma. Arch Ophthalmol. 1991;109(4):472–3.

    Article  CAS  PubMed  Google Scholar 

  109. Taylor D, Stout A. Optic nerve: congenital abnormalities. In: Taylor D, editor. Paediatric ophthalmology. 2nd ed. Oxford: Blackwell Science; 1997. p. 660–700.

    Google Scholar 

  110. Wise JB, MacLean AL, Gass JD. Contractile peripapillary staphyloma. Arch Ophthalmol. 1966;75(5):626–30.

    Article  CAS  PubMed  Google Scholar 

  111. Font RL, Zimmerman LE. Intrascleral smooth muscle in coloboma of the optic disk. Electron microscopic verification. Am J Ophthalmol. 1971;72(2):452–7.

    Article  CAS  PubMed  Google Scholar 

  112. Sevgi DD, Orge FH. Contractile morning glory disk anomaly: analysis of the cyclic contractions and literature review. J AAPOS. 2020;24(2):99.e1–6.

    Article  Google Scholar 

  113. Lehalle D, Altunoglu U, Bruel AL, Arnaud E, Blanchet P, Choi JW, et al. Clinical delineation of a subtype of frontonasal dysplasia with creased nasal ridge and upper limb anomalies: report of six unrelated patients. Am J Med Genet A. 2017;173(12):3136–42.

    Article  CAS  PubMed  Google Scholar 

  114. Sanjari MS, Falavarjani KG, Kashkouli MB. Bilateral peripapillary staphyloma, a clinicoradiological report. Br J Ophthalmol. 2006;90(10):1326–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Müllner-Eidenböck A, Amon M, Moser E, Klebermass N. Persistent fetal vasculature and minimal fetal vascular remnants: a frequent cause of unilateral congenital cataracts. Ophthalmology. 2004;111(5):906–13.

    Article  PubMed  Google Scholar 

  116. Reese AB. Persistent hyperplastic primary vitreous. Am J Ophthalmol. 1955;40(3):317–31.

    Article  CAS  PubMed  Google Scholar 

  117. Scott WE, Drummond GT, Keech RV, Karr DJ. Management and visual acuity results of monocular congenital cataracts and persistent hyperplastic primary vitreous. Aust N Z J Ophthalmol. 1989;17(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  118. Yamada K, Ozeki H, Ieda M, Shirai S, Majima A. Four cases of persistent hyperplastic primary vitreous. Nippon Ganka Gakkai Zasshi. 1997;101(10):826–31.

    CAS  PubMed  Google Scholar 

  119. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6):987–1000.

    Article  CAS  PubMed  Google Scholar 

  120. Lassar AB. Finding MyoD and lessons learned along the way. Semin Cell Dev Biol. 2017;72:3–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Taylor SM, Jones PA. Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol. 1982;111(2):187–94.

    Article  CAS  PubMed  Google Scholar 

  122. Ozanics V, Jakobiec F. Prenatal development of the eye and its adnexa. In: Jakobiec F, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper Collins; 1982. p. 89.

    Google Scholar 

  123. Sevel D. A reappraisal of the origin of human extraocular muscles. Ophthalmology. 1981;88(12):1330–8.

    Article  CAS  PubMed  Google Scholar 

  124. Miller NR, Kiel SM, Green WR, Clark AW. Unilateral Duane’s retraction syndrome (Type 1). Arch Ophthalmol. 1982;100(9):1468–72.

    Article  CAS  PubMed  Google Scholar 

  125. Ramon y Cajal. Cajal’s degeneration and regeneration of the nervous system. In: Ramon y Cajal S, Defelipe J, Jones E, editors. Cajal;s degeneration and regeneration of the nervous system. London: Oxford University Press; 1991.

    Chapter  Google Scholar 

  126. Weber ED, Newman SA. Aberrant regeneration of the oculomotor nerve: implications for neurosurgeons. Neurosurg Focus. 2007;23(5):E14.

    Article  PubMed  Google Scholar 

  127. Lai YH, Acaroglu G, Wang HZ, Hsu HT. Contractile peripapillary staphyloma mimicking morning-glory disc anomaly. Kaohsiung J Med Sci. 2012;28(5):294–5.

    Article  PubMed  Google Scholar 

  128. Lee BJ, Traboulsi EI. Update on the morning glory disc anomaly. Ophthalmic Genet. 2008;29(2):47–52.

    Article  PubMed  Google Scholar 

  129. Farah ME, Uno F, Bonomo PP, Nóbrega M, Höfling-Lima AL. Contractile peripapillary staphyloma with light stimulus to the contralateral eye. Arch Ophthalmol. 2001;119(8):1216–7.

    CAS  PubMed  Google Scholar 

  130. Sawada Y, Fujiwara T, Yoshitomi T. Morning glory disc anomaly with contractile movements. Graefes Arch Clin Exp Ophthalmol. 2012;250(11):1693–5.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Brodsky MC. Contractile morning glory disc causing transient monocular blindness in a child. Arch Ophthalmol. 2006;124(8):1199–201.

    Article  PubMed  Google Scholar 

  132. Ezra E, Spalton D, Sanders MD, Graham EM, Plant GT. Ocular neuromyotonia. Br J Ophthalmol. 1996;80(4):350–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Rasool N, Hoyt CS. William F. Hoyt and the neuro-ophthalmology of superior oblique myokymia and ocular neuromyotonia. J Neuroophthalmol. 2020;40(Suppl 1):S29–s34.

    Google Scholar 

  134. Shults WT, Hoyt WF, Behrens M, MacLean J, Saul RF, Corbett JJ. Ocular neuromyotonia. A clinical description of six patients. Arch Ophthalmol. 1986;104(7):1028–34.

    Article  CAS  PubMed  Google Scholar 

  135. El Bahloul M, Chraïbi F, Mohammed M, Abdellaoui M, Benatiya I. Unilateral macular coloboma: about a case. Pan Afr Med J. 2017;28:55.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Honkanen RA, Jampol LM, Fingert JH, Moore MD, Taylor CM, Stone EM, et al. Familial cavitary optic disk anomalies: clinical features of a large family with examples of progressive optic nerve head cupping. Am J Ophthalmol. 2007;143(5):788–94.

    Article  PubMed  Google Scholar 

  137. Sanyanusin P, McNoe LA, Sullivan MJ, Weaver RG, Eccles MR. Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum Mol Genet. 1995;4(11):2183–4.

    Article  CAS  PubMed  Google Scholar 

  138. Savell J, Cook JR. Optic nerve colobomas of autosomal-dominant heredity. Arch Ophthalmol. 1976;94(3):395–400.

    Article  CAS  PubMed  Google Scholar 

  139. Slusher MM, Weaver RG Jr, Greven CM, Mundorf TK, Cashwell LF. The spectrum of cavitary optic disc anomalies in a family. Ophthalmology. 1989;96(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  140. Ohno-Matsui K, Hirakata A, Inoue M, Akiba M, Ishibashi T. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7769–78.

    Article  PubMed  Google Scholar 

  141. Lambert SR, Lyons CJ. Congenital anomalies of the optic disc. In: Lambert SR, Lyons CJ, editors. Taylor and Hoyt’s pediatric ophthalmology and strabismus. 5th ed. London: Elsevier; 2016. p. 562–75.

    Google Scholar 

  142. Awan KJ. Arterial vascular anomalies of the retina. Arch Ophthalmol. 1977;95(7):1197–202.

    Article  CAS  PubMed  Google Scholar 

  143. Ashton N. Retinal angiogenesis in the human embryo. Br Med Bull. 1970;26(2):103–6.

    Article  CAS  PubMed  Google Scholar 

  144. Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci. 2000;41(5):1217–28.

    CAS  PubMed  Google Scholar 

  145. Barroso LH, Hoyt WF, Narahara M. Can the arterial supply of the retina in man be exclusively cilioretinal? J Neuroophthalmol. 1994;14(2):87–90.

    Article  CAS  PubMed  Google Scholar 

  146. Parsa CF, Parsa A. Diagnosing papillorenal syndrome: see the optic papilla. Pediatr Nephrol. 2008;23(10):1893–4.

    Article  PubMed  Google Scholar 

  147. Mann I. The development of the human eye. The associated mesoderm. New York: Grune & Stratton; 1964.

    Google Scholar 

  148. Saida K, Kamei K, Morisada N, Ogura M, Ogata K, Matsuoka K, et al. A novel truncating PAX2 mutation in a boy with renal coloboma syndrome with focal segmental glomerulosclerosis causing rapid progression to end-stage kidney disease. CEN Case Rep. 2020;9(1):19–23.

    Article  PubMed  Google Scholar 

  149. Jafar TH, Schmid CH, Levey AS. Effect of angiotensin-converting enzyme inhibitors on progression of nondiabetic renal disease. Ann Intern Med. 2002;137(4):298–9.

    Article  PubMed  Google Scholar 

  150. Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.

    Article  PubMed  Google Scholar 

  151. Simeoni M, Armeni A, Summaria C, Cerantonio A, Fuiano G. Current evidence on the use of anti-RAAS agents in congenital or acquired solitary kidney. Ren Fail. 2017;39(1):660–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Fingert JH, Honkanen RA, Shankar SP, Affatigato LM, Ehlinger MA, Moore MD, et al. Familial cavitary optic disk anomalies: identification of a novel genetic locus. Am J Ophthalmol. 2007;143(5):795–800.

    Article  PubMed Central  PubMed  Google Scholar 

  153. Okumura T, Furuichi K, Higashide T, Sakurai M, Hashimoto S, Shinozaki Y, et al. Association of PAX2 and other gene mutations with the clinical manifestations of renal coloboma syndrome. PLoS One. 2015;10(11):e0142843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Chen CS, Odel JG, Miller JS, Hood DC. Multifocal visual evoked potentials and multifocal electroretinograms in papillorenal syndrome. Arch Ophthalmol. 2002;120(6):870–1.

    Article  PubMed  Google Scholar 

  155. Williams EJ, McCormick AQ, Tischler B. Retinal vessels in Down’s syndrome. Arch Ophthalmol. 1973;89(4):269–71.

    Article  CAS  PubMed  Google Scholar 

  156. Parsa CF, Almer Z. Supranumerary optic disc vessels may indicate reduced systemic angiogenesis in Down syndrome. Br J Ophthalmol. 2008;92(3):432–3.

    Article  CAS  PubMed  Google Scholar 

  157. Postolache L. Abnormalities of the optic nerve in Down syndrome and associations with visual acuity. Front Neurol. 2019;10:633.

    Google Scholar 

  158. Fulcher T, Griffin M, Crowley S, Firth R, Acheson R, O’Meara N. Diabetic retinopathy in Down’s syndrome. Br J Ophthalmol. 1998;82(4):407–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Movsas TZ, Spitzer AR, Gewolb IH. Trisomy 21 and risk of retinopathy of prematurity. Pediatrics. 2015;136(2):e441–7.

    Article  PubMed  Google Scholar 

  160. Ylä-Herttuala S, Luoma J, Nikkari T, Kivimäki T. Down’s syndrome and atherosclerosis. Atherosclerosis. 1989;76(2–3):269–72.

    Article  PubMed  Google Scholar 

  161. Nižetić D, Groet J. Tumorigenesis in Down’s syndrome: big lessons from a small chromosome. Nat Rev Cancer. 2012;12(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  162. D’Antona L, McHugh JA, Ricciardi F, Thorne LW, Matharu MS, Watkins LD, et al. Association of intracranial pressure and spontaneous retinal venous pulsation. JAMA Neurol. 2019;76(12):1502–5.

    Article  PubMed Central  PubMed  Google Scholar 

  163. Parsa CF. Spontaneous venous pulsations should be monitored during glaucoma therapy. Br J Ophthalmol. 2002;86(10):1187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Golzan SM, Graham SL, Leaney J, Avolio A. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins. Curr Eye Res. 2011;36(1):53–9.

    Article  PubMed  Google Scholar 

  165. Shapiro MJ, Chow CC, Blair MP, Kiernan DF, Kaufman LM. Peripheral nonperfusion and tractional retinal detachment associated with congenital optic nerve anomalies. Ophthalmology. 2013;120(3):607–15.

    Article  PubMed  Google Scholar 

  166. Larson A, Rinaldo L, Lanzino G, Klaas JP. High prevalence of pro-thrombotic conditions in adult patients with moyamoya disease and moyamoya syndrome: a single center study. Acta Neurochir. 2020;162(8):1853–9.

    Article  PubMed  Google Scholar 

  167. Miller MT, Strömland KK. What can we learn from the thalidomide experience: an ophthalmologic perspective. Curr Opin Ophthalmol. 2011;22(5):356–64.

    Article  PubMed  Google Scholar 

  168. Miller MT, Ventura L, Strömland K. Thalidomide and misoprostol: ophthalmologic manifestations and associations both expected and unexpected. Birth Defects Res A Clin Mol Teratol. 2009;85(8):667–76.

    Article  CAS  PubMed  Google Scholar 

  169. Pabinger I, Grafenhofer H. Anticoagulation during pregnancy. Semin Thromb Hemost. 2003;29(6):633–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Parsa, C.F., Cheeseman, E.W. (2021). Congenital Optic Nerve Anomalies. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_283-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_283-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Congenital Optic Nerve Anomalies
    Published:
    27 August 2021

    DOI: https://doi.org/10.1007/978-3-319-90495-5_283-2

  2. Original

    Congenital Optic Nerve Anomalies
    Published:
    28 July 2021

    DOI: https://doi.org/10.1007/978-3-319-90495-5_283-1