Skip to main content

Fundamentals of Genetics

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Genes are the fundamental units used in the study of inherited traits or diseases. In more recent years, genes have been defined on the basis of the encoded protein product or a functional RNA molecule, irrespective of any phenotypes known to be associated with variations or mutations. A gene is determined by the particular order of bases within a specified region in a molecule of DNA. Obtaining the complete sequence of the human genome within the first decade of the twenty-first century was one of the initial goals of the Human Genome Project. The first draft of the complete human genome sequence was obtained in 2001; however, assembling the complete human genome sequence proved to be a challenge that occupies researchers to this day. A notable discovery that emerged after completion of the Human Genome Project was that there are less genes ( ~20,000) than originally expected ( ~100,000). The major types of inheritance of human disease are: dominant, recessive, X-linked, mitochondrial (also called maternal), digenic, and polygenic. Of these, the first four are discussed in this chapter in the context of ocular disease. Different types of genetic variation and current practices of genetic testing are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sipos L, Gyurkovics H. Long-distance interactions between enhancers and promoters. FEBS J. 2005;272:3253–9.

    Article  CAS  PubMed  Google Scholar 

  2. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene. 2013;514(1):1–30. https://doi.org/10.1016/j.gene.2012.07.083.

    Article  CAS  PubMed  Google Scholar 

  3. Wilson MG, Towner JW, Fujimoto A. Retinoblastoma and D-chromosome deletions. Am J Hum Genet. 1973;25:57.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lele KP, Penrose LS, Stallard HB. Chromosome deletion in a case of retinoblastoma. Ann Hum Genet. 1963;27:171.

    Article  CAS  PubMed  Google Scholar 

  5. Sparkes RS, Sparkes MC, Wilson MG, et al. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science. 1980;208:1042–4.

    Article  CAS  PubMed  Google Scholar 

  6. Crolla JA, van Heyningen V. Frequent chromosome aberrations revealed by molecular cytogenetic studies in patients with aniridia. Am J Hum Genet. 2002;71:1138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  8. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45. https://doi.org/10.1038/nature03001.

    Article  CAS  Google Scholar 

  9. Eisenstein M. Closing in on a complete human genome. Nature. 2021;590(7847):679–81. https://doi.org/10.1038/d41586-021-00462-9.

    Article  CAS  PubMed  Google Scholar 

  10. Logsdon GA, Vollger MR, Hsieh PH, Mao Y, Liskovykh MA, Koren S, Nurk S, et al. The structure, function, and evolution of a complete human chromosome 8. BioRxiv; 2020. January, 2020.09.08.285395. https://doi.org/10.1101/2020.09.08.285395.

  11. Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, Brooks S, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585(7823):79–84. https://doi.org/10.1038/s41586-020-2547-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343:364.

    Article  CAS  PubMed  Google Scholar 

  13. Small KW, DeLuca AP, Scott Whitmore S, Rosenberg T, Silva-Garcia R, Udar N, Puech B, et al. North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13. Ophthalmology. 2016;123(1):9–18. https://doi.org/10.1016/j.ophtha.2015.10.006.

    Article  PubMed  Google Scholar 

  14. Rebbeck TR, Kanetsky PA, Walker AH, Holmes R, Halpern AC, Schuchter LM, Elder DE, Guerry DP. P gene as an inherited biomarker of human eye color. Cancer Epidemiol Biomark Prev. 2002;11(8):782–4.

    CAS  Google Scholar 

  15. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening. Hum Mutat. 2000;16:143–56.

    Google Scholar 

  16. van den Hurk JA, Schwartz M, van Bokhoven H, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat. 1997;9:110–7.

    Article  Google Scholar 

  17. Rivolta C, Sharon D, DeAngelis MM, Dryja TP. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet. 2002a;11:1219–27.

    Article  CAS  PubMed  Google Scholar 

  18. Verbakel SK, Van Huet RAC, Boon CJF, Den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Jeroen Klevering B. Non-syndromic retinitis Pigmentosa. Prog Retin Eye Res. 2018;66:157–86. https://doi.org/10.1016/j.preteyeres.2018.03.005.

    Article  PubMed  Google Scholar 

  19. Berger W, van de Pol D, Warburg M, et al. Mutations in the candidate gene for Norrie disease. Hum Mol Genet. 1992;1:461–7.

    Article  CAS  PubMed  Google Scholar 

  20. Chen ZY, Battinelli EM, Fielder A, et al. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy. Nat Genet. 1993;5:180–3.

    Article  CAS  PubMed  Google Scholar 

  21. Hutcheson KA, Paluru PC, Bernstein SL, et al. Norrie disease gene sequence variants in an ethnically diverse population with retinopathy of prematurity. Mol Vis. 2005;11:501–8.

    CAS  PubMed  Google Scholar 

  22. Dryja TP, Berson EL, Rao VR, et al. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet. 1993;4:280–3.

    Article  CAS  PubMed  Google Scholar 

  23. Neidhardt J, Barthelmes D, Farahmand F, et al. Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes. Invest Ophthalmol Vis Sci. 2006;47:1630–5.

    Article  PubMed  Google Scholar 

  24. McLaughlin ME, Sandberg MA, Berson EL, et al. Recessive mutations in the gene encoding the b-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet. 1993;4:130–4.

    Article  CAS  PubMed  Google Scholar 

  25. Dryja TP. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson memorial lecture. Am J Ophthalmol. 2000;130:547–63.

    Article  CAS  PubMed  Google Scholar 

  26. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020; https://doi.org/10.1038/s41586-020-1978-5.

  27. Rolf B, Krawczak M. The germlines of male monozygotic (MZ) twins: very similar, but not identical. Forensic Sci Int Genet. 2021; https://doi.org/10.1016/j.fsigen.2020.102408.

  28. Lee S, Duffy DL, McClenahan P, Lee KJ, McEniery E, Burke B, Jagirdar K, et al. Heritability of Naevus patterns in an adult twin cohort from the Brisbane twin registry: a cross-sectional study. Br J Dermatol. 2016; https://doi.org/10.1111/bjd.14291.

  29. Yeh I. New and evolving concepts of melanocytic nevi and melanocytomas. Mod Pathol. 2020; https://doi.org/10.1038/s41379-019-0390-x.

  30. Fares F, David M, Lerner A, et al. Paternal isodisomy of chromosome 7 with cystic fibrosis and overgrowth. Am J Med Genet A. 2006;140:1785–8.

    Article  PubMed  CAS  Google Scholar 

  31. Rivolta C, Berson EL, Dryja TP. Paternal uniparental heterodisomy with partial isodisomy of chromosome 1 in a patient with retinitis pigmentosa without hearing loss and a missense mutation in the Usher syndrome type II gene USH2A. Arch Ophthalmol. 2002b;120:1566–71.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson DA, McHenry CL, Li Y, et al. Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am J Hum Genet. 2002;70:224–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sandgren O, Holmgren G, Lundgren E. Vitreous amyloidosis associated with homozygosity for the transthyretin methionine-30 gene. Arch Ophthalmol. 1990;108:1584–6.

    Article  CAS  PubMed  Google Scholar 

  34. Glaser T, Jepeal L, Edwards JG, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia, and central nervous system defects. Nat Genet. 1994;7:463–71.

    Article  CAS  PubMed  Google Scholar 

  35. Zlotogora J, Lerer I, Bar-David S, et al. Homozygosity for Waardenburg syndrome. Am J Hum Genet. 1995;56:1173–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Peltola KE, Nanto-Salonen K, Heinonen OJ, et al. Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase. Ophthalmology. 2001;108:721–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lorenz B, Andrassi M, Kretschmann U. Phenotype in two families with RP3 associated with RPGR mutations. Ophthalmic Genet. 2003;24:89–101.

    Article  PubMed  Google Scholar 

  38. Comander J, Weigel-DiFranco C, Sandberg MA, Berson EL. Visual function in carriers of X-linked retinitis Pigmentosa. Ophthalmology. 2015;122(9):1899–906. https://doi.org/10.1016/j.ophtha.2015.05.039.

    Article  PubMed  Google Scholar 

  39. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427.

    Article  CAS  PubMed  Google Scholar 

  40. Howell N. LHON and other optic nerve atrophies: the mitochondrial connection. Dev Ophthalmol. 2003;37:94–108.

    Article  CAS  PubMed  Google Scholar 

  41. DiMauro S. Lessons from mitochondrial DNA mutations. Semin Cell Dev Biol. 2001;12:397–405.

    Article  CAS  PubMed  Google Scholar 

  42. Luo S, Alexander Valencia C, Zhang J, Lee NC, Slone J, Gui B, Wang X, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A. 2018; https://doi.org/10.1073/pnas.1810946115.

  43. Spruijt L, Kolbach DN, de Coo RF, et al. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am J Ophthalmol. 2006;141:676–82.

    Article  PubMed  Google Scholar 

  44. Al-Maghtheh M, Vithana E, Tarttelin E, Jay M, Evans K, Moore T, Bhattacharya S, Inglehearn CF. Evidence for a major retinitis Pigmentosa locus on 19q13.4 (RP11) and association with a unique bimodal expressivity phenotype. Am J Hum Genet. 1996;59(4):864–71. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8808602.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, et al. A human homolog of yeast pre-MRNA splicing gene, PRP31, underlies autosomal dominant retinitis Pigmentosa on chromosome 19q13.4 (RP11). Mol Cell. 2001;8(2):375–81. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11545739.

    Article  CAS  PubMed  Google Scholar 

  46. McGee TL, Devoto M, Ott J, Berson EL, Dryja TP. Evidence that the penetrance of mutations at the RP11 locus causing dominant retinitis Pigmentosa is influenced by a gene linked to the homologous RP11 allele. Am J Hum Genet. 1997;61(5):1059–66. https://doi.org/10.1086/301614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rivolta C, McGee TL, Rio Frio T, et al. Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum Mutat. 2006;27:644–53.

    Article  CAS  PubMed  Google Scholar 

  48. Glavač D, Jarc-Vidmar M, Vrabec K, Ravnik-Glavač M, Fakin A, Hawlina M. Clinical and genetic heterogeneity in Slovenian patients with BEST disease. Acta Ophthalmol. 2016; https://doi.org/10.1111/aos.13202.

  49. Hebrard M, Manes G, Bocquet B, Meunier I, Coustes-Chazalette D, Hérald E, Sénéchal A, Bolland-Augé A, Zelenika D, Hamel CP. Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families. Eur J Hum Genet. 2011;19(12):1256–63. https://doi.org/10.1038/ejhg.2011.133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chapi M, Sabbaghi H, Suri F, Alehabib E, Rahimi-Aliabadi S, Jamali F, Jamshidi J, et al. Incomplete penetrance of CRX gene for autosomal dominant form of cone-rod dystrophy. Ophthalmic Genet. 2019; https://doi.org/10.1080/13816810.2019.1622023.

  51. Rosser T. Aicardi syndrome. Arch Neurol. 2003;60:1471–3.

    Article  PubMed  Google Scholar 

  52. Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol. 2002;47:169–87.

    Article  PubMed  Google Scholar 

  53. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264:1604–8.

    Article  CAS  PubMed  Google Scholar 

  54. Morell R, Spritz RA, Ho L, et al. Apparent digenic inheritance of Waardenburg syndrome type 2 (WS2) and autosomal recessive ocular albinism (AROA). Hum Mol Genet. 1997;6:659–64.

    Article  CAS  PubMed  Google Scholar 

  55. Katsanis N, Ansley SJ, Badano JL, et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science. 2001;293:2256–9.

    Article  CAS  PubMed  Google Scholar 

  56. Lindstrand A, Frangakis S, Carvalho CMB, Richardson EB, McFadden KA, Willer JR, Pehlivan D, et al. Copy-number variation contributes to the mutational load of Bardet-Biedl syndrome. Am J Hum Genet. 2016; https://doi.org/10.1016/j.ajhg.2015.04.023.

  57. Klein AP, Duggal P, Lee KE, et al. Support for polygenic influences on ocular refractive error. Invest Ophthalmol Vis Sci. 2005;46:442–6.

    Article  PubMed  Google Scholar 

  58. Haddad S, Chen CA, Santangelo SL, Seddon JM. The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol. 2006;51:316–63.

    Article  PubMed  Google Scholar 

  59. Hewitt AW, Craig JE, Mackey DA. Complex genetics of complex traits: the case of primary open-angle glaucoma. Clin Exp Ophthalmol. 2006;34:472–84.

    Article  PubMed  Google Scholar 

  60. Van Heyningen V, Yeyati PL. Mechanisms of non-Mendelian inheritance in genetic disease. Hum Mol Genet. 2004;13:R225–33.

    Article  PubMed  CAS  Google Scholar 

  61. Olivier M, Aggarwal A, Allen J, et al. A high-resolution radiation hybrid map of the human genome draft sequence. Science. 2001;291:1298–302.

    Article  CAS  PubMed  Google Scholar 

  62. Nakamura Y, Leppert M, O’Connell P, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987;235:1616–22.

    Article  CAS  PubMed  Google Scholar 

  63. Knight JC. Regulatory polymorphisms underlying complex disease traits. J Mol Med. 2005;83:97–109.

    Article  CAS  PubMed  Google Scholar 

  64. Nievergelt CM, Smith DW, Kohlenberg JB, Schork NJ. Large-scale integration of human genetic and physical maps. Genome Res. 2004;14:1199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA. A glimpse into past, present, and future DNA sequencing. Mol Genet Metab. 2013;110(1–2):3–24. https://doi.org/10.1016/j.ymgme.2013.04.024.

    Article  CAS  PubMed  Google Scholar 

  66. Feuk L, Marshall CR, Wintle RF, Scherer SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet. 2006;15:R57–66.

    Article  CAS  PubMed  Google Scholar 

  67. Wiggs JL. Complement factor H and macular degeneration: the genome yields an important clue. Arch Ophthalmol. 2006;124:577–8.

    Article  CAS  PubMed  Google Scholar 

  68. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  CAS  Google Scholar 

  69. Chang Y-FF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74. https://doi.org/10.1146/annurev.biochem.76.050106.093909.

    Article  CAS  PubMed  Google Scholar 

  70. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61(1):437–55. https://doi.org/10.1146/annurev-med-100708-204735.

    Article  CAS  PubMed  Google Scholar 

  71. Bujakowska KM, Fernandez-Godino R, Place E, Consugar M, Navarro-Gomez D, White J, Bedoukian EC, et al. Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet Med. 2017;19(6):643–51. https://doi.org/10.1038/gim.2016.158.

    Article  PubMed  Google Scholar 

  72. Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol. 2005;32:191–205.

    Article  PubMed  Google Scholar 

  73. Dryja TP, Morrow JF, Rapaport JM. Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene. Hum Genet. 1997;100:446–9.

    Article  CAS  PubMed  Google Scholar 

  74. Jadayel D, Fain P, Upadhyaya M, et al. Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature. 1990;343:558–9.

    Article  CAS  PubMed  Google Scholar 

  75. Vogel F, Rathenberg R. Spontaneous mutation in man. Adv Hum Genet. 1975;5:223.

    Article  CAS  PubMed  Google Scholar 

  76. Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet. 2006;15:R95–R101.

    Article  CAS  PubMed  Google Scholar 

  77. Mertens D, Wolf S, Tschuch C, et al. Allelic silencing at the tumor-suppressor locus 13q14.3 suggests an epigenetic tumor-suppressor mechanism. Proc Natl Acad Sci U S A. 2006;103:7741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature. 2006;439:430–6.

    Article  CAS  PubMed  Google Scholar 

  79. de Andrade AF, da Hora BR, Vargas FR, et al. A molecular study of first and second RB1 mutational hits in retinoblastoma patients. Cancer Genet Cytogenet. 2006;167:43–6.

    Article  PubMed  CAS  Google Scholar 

  80. Kantor B, Shemer R, Razin A. The Prader–Willi/Angelman imprinted domain and its control center. Cytogenet Genome Res. 2006;113:300–5.

    Article  CAS  PubMed  Google Scholar 

  81. Fridman C, Hosomi N, Varela MC, et al. Angelman syndrome associated with oculocutaneous albinism due to an intragenic deletion of the P gene. Am J Med Genet A. 2003;119:180–3.

    Article  Google Scholar 

  82. Retinal Information Network. 2019. https://sph.uth.edu/retnet/home.htm

  83. Consugar MB, Navarro-Gomez D, Place EM, Bujakowska KM, Sousa ME, Fonseca-Kelly ZD, Taub DG, et al. Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med. 2015;17(4):253–61. https://doi.org/10.1038/gim.2014.172.

    Article  CAS  PubMed  Google Scholar 

  84. Beryozkin A, Shevah E, Kimchi A, Mizrahi-Meissonnier L, Khateb S, Ratnapriya R, Lazar CH, et al. Whole exome sequencing reveals mutations in known retinal disease genes in 33 out of 68 Israeli families with inherited retinopathies. Sci Rep. 2015;5:1–11. https://doi.org/10.1038/srep13187.

    Article  CAS  Google Scholar 

  85. Watson CM, Crinnion LA, Berry IR, Harrison SM, Lascelles C, Antanaviciute A, Charlton RS, Dobbie A, Carr IM, Bonthron DT. Enhanced diagnostic yield in Meckel-Gruber and Joubert syndrome through exome sequencing supplemented with split-read mapping. BMC Med Genet. 2016;17(1):1–9. https://doi.org/10.1186/s12881-015-0265-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18(1):1–13. https://doi.org/10.1186/s12863-017-0479-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga M. Bujakowska .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bujakowska, K.M., Dryja, T.P. (2021). Fundamentals of Genetics. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_146-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics