Skip to main content

Optical Coherence Tomography

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Optical coherence tomography (OCT), first developed in Boston, is an imaging technique that utilizes low-coherence light to achieve an in-depth, cross-sectional, depiction of biological tissues in vivo, offering a real-time, noninvasive image with high-resolution at a micron-level (Puliafito et al, Ophthalmology 102(2): 217–29, 1995; Trichonas and Kaiser, British J Ophthalmol 98(Suppl 2): ii24-ii9, 2014). It has a worldwide impact on health care and in ophthalmology where its introduction constituted a turning point in the clinical diagnosis and treatment of several ocular pathologies (Yonetsu et al., Circ J 77(8): 1933–40, 2013). OCT imaging is not limited to the posterior segment of the eye, although it is the focus of this chapter. Major differences among OCT machines will be discussed along with their advantages and limitations. Examples of anatomical features in healthy and diseased eyes will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102(2):217–29.

    Article  CAS  PubMed  Google Scholar 

  2. Trichonas G, Kaiser PK. Optical coherence tomography imaging of macular oedema. British J Ophthalmol. 2014;98(Suppl 2):ii24-ii9.

    Article  Google Scholar 

  3. Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang I-K. Optical coherence tomography. Circ J. 2013;77(8):1933–40.

    Article  PubMed  Google Scholar 

  4. Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT1–OCT13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt. 2004;9(1):47.

    Article  PubMed  Google Scholar 

  6. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2(1–2):9–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilgen HH, Novak RP, Salathe RP, Hodel W, Beaud P. Submillimeter optical reflectometry. J Lightwave Technol. 1989;7(8):1225–33.

    Article  CAS  Google Scholar 

  9. Schuman JS. Optical coherence tomography of ocular diseases. 3rd ed. Thorofare: SLACK Inc.; 2013. xviii, 615 p

    Google Scholar 

  10. Chew MC, Lim LW, Tan E, Tan CS. Comparability of retinal thickness measurements using different scanning protocols on spectral-domain optical coherence tomography. Int Ophthalmol. 2016;36(6):791–7.

    Article  PubMed  Google Scholar 

  11. Podoleanu AG. Optical coherence tomography. Br J Radiol. 2005;78(935):976–88.

    Article  PubMed  Google Scholar 

  12. Bhende M, Shetty S, Parthasarathy M, Ramya S. Optical coherence tomography: a guide to interpretation of common macular diseases. Indian J Ophthalmol. 2018;66(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149(1):18–31.

    Article  PubMed  Google Scholar 

  14. Li M, Wang H, Liu Y, Zhang X, Wang N. Comparison of time-domain, spectral-domain and swept-source OCT in evaluating aqueous cells in vitro. Sci China Life Sci. 2016;59(12):1319–23.

    Article  PubMed  Google Scholar 

  15. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. Ophthalmology. 2014;121(8):1572–8.

    Article  PubMed  Google Scholar 

  16. Chu YK, Hong YT, Byeon SH, Kwon OW. In vivo detection of acute ischemic damages in retinal arterial occlusion with optical coherence tomography. Retina. 2013;33(10):2110–7.

    Article  PubMed  Google Scholar 

  17. Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I, Chen R, et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Opthalmol Vis Sci. 2008;49(4):1571.

    Article  Google Scholar 

  18. Curcio CA, Messinger JD, Sloan KR, Mitra A, McGwin G, Spaide RF. Human Chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections. Invest Opthalmol Vis Sci. 2011;52(7):3943.

    Article  Google Scholar 

  19. Otani T, Yamaguchi Y, Kishi S. Improved visualization of henle fiber layer by changing the measurement beam angle on optical coherence tomography. Retina. 2011;31(3):497–501.

    Article  PubMed  Google Scholar 

  20. Lujan BJ, Roorda A, Knighton RW, Carroll J. Revealing Henle’s Fiber layer using spectral domain optical coherence tomography. Invest Opthalmol Vis Sci. 2011;52(3):1486.

    Article  Google Scholar 

  21. Drexler W. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003;121(5):695.

    Article  PubMed  Google Scholar 

  22. Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med. 2001;7(4):502–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography. Retina. 2011;31(8):1609–19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W. Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest Opthalmol Vis Sci. 2003;44(4):1696.

    Article  Google Scholar 

  25. Lu R-W, Curcio CA, Zhang Y, Zhang Q-X, Pittler SJ, Deretic D, et al. Investigation of the hyper-reflective inner/outer segment band in optical coherence tomography of living frog retina. J Biomed Opt. 2012;17(6):060504.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leitgeb RA. En face optical coherence tomography: a technology review [invited]. Biomed Opt Express. 2019;10(5):2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500.

    Article  PubMed  Google Scholar 

  28. Považay B, Hermann B, Unterhuber A, Hofer B, Sattmann H, Zeiler F, et al. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J Biomed Opt. 2007;12(4):041211.

    Article  PubMed  Google Scholar 

  29. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Opthalmol Vis Sci. 2010;51(4):2173.

    Article  Google Scholar 

  30. Wong IY, Koizumi H, Lai WW. Enhanced depth imaging optical coherence tomography. Ophthalmic Surg. Lasers Imaging. 2011;42(4):S75–84.

    Article  PubMed  Google Scholar 

  31. Beaurepaire E, Boccara AC, Lebec M, Blanchot L, Saint-Jalmes H. Full-field optical coherence microscopy. Opt Lett. 1998;23(4):244.

    Article  CAS  PubMed  Google Scholar 

  32. Grieve K, Paques M, Dubois A, Sahel J, Boccara C, Le Gargasson J-F. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. Invest Opthalmol Vis Sci. 2004;45(11):4126.

    Article  Google Scholar 

  33. Pircher M, Hitzenberger CK, Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res. 2011;30(6):431–51.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schütze C, Teleky K, Baumann B, Pircher M, Götzinger E, Hitzenberger CK, et al. Polarisation-sensitive OCT is useful for evaluating retinal pigment epithelial lesions in patients with neovascular AMD. Br J Ophthalmol. 2015;100(3):371–7.

    Article  PubMed  Google Scholar 

  35. Götzinger E, Pircher M, Hitzenberger CK. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt Express. 2005;13(25):10217.

    Article  PubMed  Google Scholar 

  36. Pircher M, Gotzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C, et al. Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest Opthalmol Vis Sci. 2006;47(12):5487.

    Article  Google Scholar 

  37. Ray R, Stinnett SS, Jaffe GJ. Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005;139(1):18–29.

    Article  PubMed  Google Scholar 

  38. Hee MR. Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol. 2005;139(1):154–5.

    Article  PubMed  Google Scholar 

  39. Giani A, Cigada M, Esmaili DD, Salvetti P, Luccarelli S, Marziani E, et al. Artifacts in automatic retinal segmentation using different optical coherence tomography instruments. Retina. 2010;30(4):607–16.

    Article  PubMed  Google Scholar 

  40. Chhablani J, Krishnan T, Sethi V, Kozak I. Artifacts in optical coherence tomography. Saudi J Ophthalmol. 2014;28(2):81–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, et al. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 2009;116(10):1960–70.

    Article  PubMed  Google Scholar 

  42. Han IC, Jaffe GJ. Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010;117(6):1177-89.e4.

    Article  Google Scholar 

  43. Giani A, Cigada M, Choudhry N, Deiro AP, Oldani M, Pellegrini M, et al. Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol. 2010;150(6):815-24.e1.

    Article  Google Scholar 

  44. Ho J, Castro DPE, Castro LC, Chen Y, Liu J, Mattox C, et al. Clinical assessment of Mirror Artifacts in spectral-domain optical coherence tomography. Invest Opthalmol Vis Sci. 2010;51(7):3714.

    Article  Google Scholar 

  45. Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, et al. Comparison of spectral/FOURIER domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30(2):235–45.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ, et al. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express. 2012;3(6):1182.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93(8):1057–63.

    Article  CAS  PubMed  Google Scholar 

  48. Baskin DE, Gault JA, Vander JF, Dugan JD. Double fovea artifact. Ophthalmology. 2011;118(2):429-e1.

    Article  PubMed  Google Scholar 

  49. Browning DJ, Fraser CM, Propst BW. The variation in optical coherence tomography–measured macular thickness in diabetic eyes without clinical macular Edema. Am J Ophthalmol. 2008;145(5):889–93.

    Article  PubMed  Google Scholar 

  50. Reproducibility of macular thickness and volume using zeiss optical coherence tomography in patients with diabetic macular edema. Ophthalmology. 2007;114(8):1520–5.

    Google Scholar 

  51. Patel PJ, Chen FK, da Cruz L, Tufail A. Segmentation error in stratus optical coherence tomography for Neovascular age-related macular degeneration. Invest Opthalmol Vis Sci. 2009;50(1):399.

    Article  Google Scholar 

  52. Wolf-Schnurrbusch UEK, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography Instruments. Invest Opthalmol Vis Sci. 2009;50(7):3432.

    Article  Google Scholar 

  53. Ip MS. Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch Ophthalmol. 2002;120(1):29.

    Article  PubMed  Google Scholar 

  54. Androudi S, Stangos A, Brazitikos PD. Lamellar macular holes: tomographic features and surgical outcome. Am J Ophthalmol. 2009;148(3):420-6.e1.

    Article  Google Scholar 

  55. Allen AW, Gass JDM. Contraction of a Perifoveal Epiretinal membrane simulating a macular hole. Am J Ophthalmol. 1976;82(5):684–91.

    Article  PubMed  Google Scholar 

  56. Gaber R, You QS, Muftuoglu IK, Alam M, Tsai FF, Mendoza N, et al. Characteristics of EPIRETINAL membrane remnant edge by optical coherence tomography after pars PLANA VITRECTOMY. Retina. 2017;37(11):2078–83.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kozak I, Freeman WR. Nonprogressive Extrafoveal retinal hole after Foveal Epiretinal membrane removal. Am J Ophthalmol. 2006;141(4):769–71.

    Article  PubMed  Google Scholar 

  58. Hartmann KI, Schuster AK, Bartsch D-U, Kim JS, Chhablani J, Freeman WR. Restoration of retinal layers after epiretinal membrane peeling. Retina. 2014;34(4):647–54.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dolz-Marco R, Hoang QV, Gallego-Pinazo R, Chang S. Assessment of the significance of cystic changes after epiretinal membrane surgery with internal limiting membrane removal. Retina. 2016;36(4):727–32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment. Retina. 2013;33(9):1735–62.

    Article  PubMed  Google Scholar 

  61. Pang CE, Messinger JD, Zanzottera EC, Freund KB, Curcio CA. The onion sign in Neovascular age-related macular degeneration represents cholesterol crystals. Ophthalmology. 2015;122(11):2316–26.

    Article  PubMed  Google Scholar 

  62. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R. Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina. 2007;27(5):589–94.

    Article  PubMed  Google Scholar 

  64. Falkenberry SM, Ip MS, Blodi BA, Gunther JB. Optical coherence tomography findings in central retinal artery occlusion. Ophthalmic Surg Lasers Imaging. 2006;37(6):502–5.

    Article  PubMed  Google Scholar 

  65. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, et al. Enhanced depth imaging optical coherence tomography of the choroid in VOGT–KOYANAGI–HARADA disease. Retina. 2012;32(10):2061–9.

    Article  PubMed  Google Scholar 

  66. Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous Chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol. 2013;58(2):103–26.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82–118.

    Article  CAS  PubMed  Google Scholar 

  68. Matsumoto H, Kishi S, Otani T, Sato T. Elongation of Photoreceptor Outer Segment in Central Serous Chorioretinopathy. Am J Ophthalmol. 2008;145(1):162-8.e1.

    Article  Google Scholar 

  69. Ota M, Tsujikawa A, Murakami T, Kita M, Miyamoto K, Sakamoto A, et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol. 2007;91(12):1644–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brar M, Yuson R, Kozak I, Mojana F, Cheng L, Bartsch D-U, et al. Correlation between morphologic features on spectral-domain optical coherence tomography and angiographic leakage patterns in macular EDEMA. Retina. 2010;30(3):383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Markomichelakis NN, Halkiadakis I, Pantelia E, Peponis V, Patelis A, Theodossiadis P, et al. Patterns of macular edema in patients with uveitis. Ophthalmology. 2004;111(5):946–53.

    Article  PubMed  Google Scholar 

  72. Spaide RF, Lee JK, Klancnik JM, Gross NE. Optical coherence tomography of branch retinal vein occlusion. Retina. 2003;23(3):343–7.

    Article  PubMed  Google Scholar 

  73. Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014;19(7):071412.

    Article  PubMed  Google Scholar 

  74. Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. Biomed Opt Express. 2019;10(12):6390–407.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pircher M, Gotzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C, et al. Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2006;47(12):5487–94.

    Article  PubMed  Google Scholar 

  76. Baumann B, Gotzinger E, Pircher M, Sattmann H, Schuutze C, Schlanitz F, et al. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J Biomed Opt. 2010;15(6):061704.

    Article  PubMed  Google Scholar 

  77. de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography – a review [invited]. Biomed Opt Express. 2017;8(3):1838–73.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Roberts P, Sugita M, Deak G, Baumann B, Zotter S, Pircher M, et al. Automated identification and quantification of subretinal fibrosis in Neovascular age-related macular degeneration using polarization-sensitive OCT. Invest Ophthalmol Vis Sci. 2016;57(4):1699–705.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Dahrouj or Demetrios Vavvas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dahrouj, M., Saitakis, G., Koulouri, I., Vavvas, D. (2021). Optical Coherence Tomography. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_140-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_140-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics