Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

  • 1008 Accesses

Abstract

This chapter is devoted to special realizations of lasing on single artificial atoms. It is demonstrated that special properties of quantum systems , implemented as an electrical circuit, may be explored to repeat original quantum optic experiments and extend them to new regimes. As we will discuss, this can, for example, lead to the realizations of lasing that only requires two states of the artificial atom . There we make use of the relaxation and of special coupling properties that naturally are achieved in the field of the circuit quantum electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, this objects were first and are still considered as promising candidates to be main building blocks for quantum computing. That is the origin for the term qubit, as quantum bit.

References

  1. H.J. Kimble, Strong interactions of single atoms and photons in cavity QED. Phys. Scr. T76, 127 (1998)

    Article  ADS  Google Scholar 

  2. C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. Parkins, H.J. Kimble, The atom-cavity microscope: single atoms bound in orbit by single photons. Science 287, 1447 (2000)

    Article  ADS  Google Scholar 

  3. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano et al., Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6(10), 772–776 (2010)

    Article  ADS  Google Scholar 

  4. J.P. Gordon, H.J. Zeiger, C.H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys. Rev. 95(1), 282–284 (1954)

    Article  ADS  Google Scholar 

  5. G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010)

    Google Scholar 

  6. J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, H.J. Kimble, Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425(6955), 268–271 (2003)

    Article  ADS  Google Scholar 

  7. F.M. Penning, Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld. Physica 3(9), 873–894 (1936)

    Article  ADS  Google Scholar 

  8. W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531–540 (1990)

    Article  ADS  Google Scholar 

  9. W. Paul, H. Steinwedel, Notizen: Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift für Naturforschung A 8(7), 448–450 (1953)

    Article  ADS  Google Scholar 

  10. T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13(1), 68–69 (1975)

    Article  ADS  Google Scholar 

  11. D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40(25), 1639–1642 (1978)

    Article  ADS  Google Scholar 

  12. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325–1382 (2006)

    Article  ADS  Google Scholar 

  13. B. Deaver, W. Fairbank, Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett. 7(2), 43–46 (1961)

    Article  ADS  Google Scholar 

  14. R. Doll, M. Näbauer, Experimental proof of magnetic flux quantization in a superconducting ring. Phys. Rev. Lett. 7(2), 51–52 (1961)

    Article  ADS  Google Scholar 

  15. J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, Josephson persistent-current qubit. Science 285(5430), 1036–1039 (1999)

    Article  Google Scholar 

  16. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398(6730), 786–788 (1999)

    Article  ADS  Google Scholar 

  17. J. Koch, T. Yu, J. Gambetta, A. Houck, D. Schuster, J. Majer, A. Blais, M. Devoret, S. Girvin, R. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76(4), 042319 (2007)

    Article  ADS  Google Scholar 

  18. B.D. Josephson, Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251–253 (1962)

    Article  ADS  Google Scholar 

  19. G. Oelsner, U. Hübner, S. Anders, E. Il’ichev, Application and fabrication aspects of sub-micrometer-sized Josephson junctions. Low Temp. Phys. (2017)

    Google Scholar 

  20. M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J.M. Fink, P.J. Leek, G. Puebla, L. Steffen, A. Wallraff, Coplanar waveguide resonators for circuit quantum electrodynamics. J. Appl. Phys. 104(11), 113904 (2008)

    Article  ADS  Google Scholar 

  21. P. Macha, S.H.W. van der Ploeg, G. Oelsner, E. Il’ichev, H.-G. Meyer, S. Wünsch, M. Siegel, Losses in coplanar waveguide resonators at millikelvin temperatures. Appl. Phys. Lett. 96(6), 062503 (2010)

    Article  ADS  Google Scholar 

  22. G. Oelsner, Single Artificial-Atom Lasing of a Dressed Flux Qubit (Cuvillier Verlag, Göttingen, 2017)

    Google Scholar 

  23. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  24. C. Rigetti, J.M. Gambetta, S. Poletto, B.L.T. Plourde, J.M. Chow, A.D. Córcoles, J.A. Smolin, S.T. Merkel, J.R. Rozen, G.A. Keefe, et al., Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86(10), 100506(R) (2012)

    Google Scholar 

  25. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004)

    Article  ADS  Google Scholar 

  26. A. Abdumalikov, O. Astafiev, Y. Nakamura, Y. Pashkin, J. Tsai, Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator. Phys. Rev. B 78(18), 180502(R) (2008)

    Article  ADS  Google Scholar 

  27. A.A. Abdumalikov, O. Astafiev, A.M. Zagoskin, Y.A. Pashkin, Y. Nakamura, J.S. Tsai, Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104(19), 193601 (2010)

    Article  ADS  Google Scholar 

  28. M.A. Sillanpää, J. Li, K. Cicak, F. Altomare, J.I. Park, R.W. Simmonds, G.S. Paraoanu, P.J. Hakonen, Autler-townes effect in a superconducting three-level system. Phys. Rev. Lett. 103(19), 193601 (2009)

    Article  ADS  Google Scholar 

  29. O. Astafiev, K. Inomata, A.O. Niskanen, T. Yamamoto, Y.A. Pashkin, Y. Nakamura, J.S. Tsai, Single artificial-atom lasing. Nature 449(7162), 588–590 (2007)

    Article  ADS  Google Scholar 

  30. G. Oelsner, P. Macha, O.V. Astafiev, E. Il’ichev, M. Grajcar, U. Hübner, B.I. Ivanov, P. Neilinger, H.-G. Meyer, Dressed-state amplification by a single superconducting qubit. Phys. Rev. Lett. 110(5), 053602 (2013)

    Article  ADS  Google Scholar 

  31. S.N. Shevchenko, G. Oelsner, Y.S. Greenberg, P. Macha, D.S. Karpov, M. Grajcar, U. Hübner, A.N. Omelyanchouk, E. Il’ichev, Amplification and attenuation of a probe signal by doubly dressed states. Phys. Rev. B 89(18), 184504 (2014)

    Article  ADS  Google Scholar 

  32. A. Izmalkov, S.H.W. van der Ploeg, S.N. Shevchenko, M. Grajcar, E. Il’ichev, U. Hübner, A.N. Omelyanchouk, H.-G. Meyer, Consistency of ground state and spectroscopic measurements on flux qubits. Phys. Rev. Lett. 101(1), 017003 (2008)

    Article  ADS  Google Scholar 

  33. P. Neilinger, S.N. Shevchenko, J. Bogar, M. Rehak, G. Oelsner, D.S. Karpov, U. Hübner, O. Astafiev, M. Grajcar, E. Il’ichev, Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics. Phys. Rev. B 94(9), 094519 (2016)

    Article  ADS  Google Scholar 

  34. Y.-X. Liu, J.Q. You, L.F. Wei, C.P. Sun, F. Nori, Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)

    Article  ADS  Google Scholar 

  35. Y.-X. Liu, C.-X. Yang, H.-C. Sun, X.-B. Wang, Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields. New J. Phys. 16(1), 015031 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Neilinger, M. Grajcar, O. Astafiev, and S. Shevchenko for the nice collaboration as well as for providing and discussion of experimental results. E. I. acknowledges partial support from the Russian Ministry of Education and Science, within the framework of State Assignment 3.8051.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Il’ichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oelsner, G., Il’ichev, E. (2018). Lasing in Circuit Quantum Electrodynamics. In: Sidorenko, A. (eds) Functional Nanostructures and Metamaterials for Superconducting Spintronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90481-8_9

Download citation

Publish with us

Policies and ethics