Skip to main content

Coupling the Navier-Stokes Equations with a Short Term Dynamic of Sand Dunes

  • Chapter
  • First Online:
Shape Optimization, Homogenization and Optimal Control

Abstract

Our paper deals about sand transport problem near the seabed. We consider model for short-term dynamics of dune (STDD) and megariple morphodynamics built in (Faye et al., Discrete and Continuous Dynamical Systems, 29; N o3 March 2011, 1001–1030), that we coupled with a Navier-Stokes equations. We study the evolution of the dunes and an existence and uniqueness results are established for coupled short-term model. In this framework we derive an asymptotic expansion with respect to the small parameter 𝜖 of its solution, and characterize the terms of the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Allaire, Homogenization and Two-Scale convergence, SIAM J. Math. Anal. 23 (1992), 1482–1518.

    Article  MathSciNet  Google Scholar 

  2. O. Besson and M. R. Laidi, Some estimates for the anisotropic navier-stokes equations and for the hydrostatic approximation, M2AN - Mod. Math. Ana. Num. 26 (1992), 855–865.

    Article  Google Scholar 

  3. L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure and Appl. Math. 35 (1982), 771–831.

    Article  MathSciNet  Google Scholar 

  4. I. Faye, E. Frénod, D. Seck, Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment,Discrete and Continuous Dynamical Systems, 29; N o3 March 2011, 1001–1030.

    Google Scholar 

  5. E. Frénod, Raviart P. A., and E. Sonnendrücker, Asymptotic expansion of the Vlasov equation in a large external magnetic field, J. Math. Pures et Appl. 80 (2001), 815–843.

    Article  Google Scholar 

  6. D. Idier, Dunes et bancs de sables du plateau continental: observations in-situ et modélisation numérique. PhD thesis, 2002.

    Google Scholar 

  7. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and Quasi-linear Equations of Parabolic Type. 23. AMS, Translation of Mathematical Monographs.

    Google Scholar 

  8. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Second English edition, revised and enlarged. Gordon and Breach, Science Publishers, New York-London-Paris 1969.

    Google Scholar 

  9. J. Leray, Sur le système d’équations aux dérivées partielles qui régit l’écoulement permanent des fuides visqueux. C. R. Acad. Sci. Paris,192 (1931), 1180–1182.

    Google Scholar 

  10. J. Leray,Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl., 12, 1933, 1–82.

    Google Scholar 

  11. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934), no. 1, 193–248.

    Article  MathSciNet  Google Scholar 

  12. J.-L. Lions, Remarques sur les équations différentielles ordinaires. Osaka Math. J. 15 (1963), 131–142.

    MathSciNet  MATH  Google Scholar 

  13. P. L. Lions, Mathematical topics in fuid mechanics. 1, Oxford, Science Publications, 1996.

    Google Scholar 

  14. P. L. Lions, Mathematical topics in fluid mechanics. 2, Compressible models. The Clarendon Press, Oxford University Press, New York, 1998.

    Google Scholar 

  15. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608–623.

    Article  MathSciNet  Google Scholar 

  16. J. Simon, Ecoulement d’un fluide non homogène avec une densité initiale s’annulant. C. R. Acad. Sci. Paris, 287 (1978), 1009–1012.

    MathSciNet  MATH  Google Scholar 

  17. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North Holland Publishing Company-Amsterdam. New York Oxford, 1977.

    MATH  Google Scholar 

  18. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition. Copyright 1983, 1985 by the Society ro industrial and Applied Mathematics.

    Google Scholar 

  19. R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

    Google Scholar 

  20. L. C. Van Rijn, Handbook on sediment transport by current and waves, Tech. Report H461:12.1–12.27, Delft Hydraulics, 1989.

    Google Scholar 

Download references

Acknowledgement

This work is supported by NLAGA project (Non Linear Analysis, Geometry and Applications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahima Faye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faye, I., Ndiaye, M., Seck, D. (2018). Coupling the Navier-Stokes Equations with a Short Term Dynamic of Sand Dunes. In: Schulz, V., Seck, D. (eds) Shape Optimization, Homogenization and Optimal Control . International Series of Numerical Mathematics, vol 169. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90469-6_10

Download citation

Publish with us

Policies and ethics