Skip to main content

Nociception, Sympathetic Nervous System, and Inflammation

When the Heart and the Skin Speak the Same Language

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics
  • 246 Accesses

Abstract

Sympathetically maintained pain syndromes (SMPs) are a heterogeneous group of painful disorders typically worsened by sympathetic activation and improved by sympathetic blockade. From a clinical standpoint, SMPs have long been known, and the first attempt to percutaneously block a sympathetic ganglion to control pain was reported in 1934. Nevertheless, the pathophysiology of these disorders is yet to be fully elucidated. A pathological nociceptive activation/pain processing, autonomic dysregulation, and immune-inflammatory dysfunctions are thought to be the main mechanisms. Of note, similar mechanisms may also be involved in pathological pain perception at the cardiac level, as it likely happens in the cardiac syndrome X. In this chapter, an overview of the molecular mechanisms linking inflammation, sympathetic nervous system (SNS) overactivity, and nociceptive activation at the cutaneous as well as the cardiac level will be provided first. The surgical procedures of sympathetic block/removal used to treat sympathetically mediated cutaneous and cardiac conditions will be then discussed. Finally, a working hypothesis for the emerging clinical issue of post-thoracoscopic sympathectomy neuropathic pain will be provided. Indeed, thousands of people all over the world underwent thoracoscopic sympathectomy (consisting in the surgical removal of the first sympathetic thoracic ganglia) for essential hyperhidrosis, with few or no reported cases of postoperative neuropathic pain. On the contrary, neuropathic pain is being reported with increasing frequency in patients with channelopathies/cardiomyopathies undergoing thoracoscopic sympathectomy for anti-arrhythmic purposes. These patients, particularly those with cardiomyopathies, have exaggerated sympathetic tone and reflexes, combined with neuronal remodeling processes affecting the sympathetic ganglia. Neuropathic pain in this setting might be related to post-denervation supersensitivity, consistently favored by the abovementioned mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Vincentz JW, Rubart M, Firulli AB. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease. Pediatr Cardiol. 2012;33:923–8. https://doi.org/10.1007/s00246-012-0248-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Janig W, Habler HJ. Organization of the autonomic nervous system: structure and function. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology, Vol 74; series 30: the autonomic nervous system. Part I. Normal functions. Amsterdam: Elsevier Science Publisher; 1999. p. 1–52.

    Google Scholar 

  3. Gibbins I. Peripheral autonomic nervous system. In: Paxinos G, editor. The human nervous system. San Diego: Academic; 1990. p. 93–123.

    Chapter  Google Scholar 

  4. Carlson BM. Integumentary, skeletal, and muscular systems. Human embryology and developmental biology. St. Louis: Mosby; 1994. p. 153–81.

    Google Scholar 

  5. Foulkes T, Wood JN. Pain genes. PLoS Genet. 2008;4(7):e1000086. https://doi.org/10.1371/journal.pgen.1000086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Woolf CJ, Ma Q. Nociceptors—noxious stimulus detectors. Neuron. 2007;55(3):353–64. https://doi.org/10.1016/j.neuron.2007.07.016.

    Article  CAS  PubMed  Google Scholar 

  7. Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. 3rd ed. New York: Kluwer Academic/Plenum; 2004.

    Book  Google Scholar 

  8. Djouhri L, Lawson SNA. [beta]-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev. 2004;46(2):131–45. https://doi.org/10.1016/j.brainresrev.2004.07.015.

    Article  PubMed  Google Scholar 

  9. Kumazawa T, Mizumura K, Kruger L, editors. The Polymodal receptor – a gateway to pathological Pain. Progress in brain research, vol. 113. New York: Elsevier; 1996.

    Google Scholar 

  10. Lewin GR, Moshourab R. Mechanosensation and pain. J Neurobiol. 2004;61(1):30–44. https://doi.org/10.1002/neu.20078.

    Article  PubMed  Google Scholar 

  11. Cain DM, Khasabov SG, Simone DA. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J Neurophysiol. 2001;85(4):1561–74. https://doi.org/10.1152/jn.2001.85.4.1561.

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk E, Handwerker H. Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci. 1995;15:333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer RA, Davis KD, Cohen RH, Treede RD, Campbell JN. Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey. Brain Res. 1991;561(2):252–61.

    Article  CAS  PubMed  Google Scholar 

  14. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427(6971):260–5. https://doi.org/10.1038/nature02282.

    Article  CAS  PubMed  Google Scholar 

  15. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41(6):849–57.

    Article  CAS  PubMed  Google Scholar 

  16. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 2007;117(7):1979–87. https://doi.org/10.1172/JCI30951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bang S, Hwang SW. Polymodal ligand sensitivity of TRPA1 and its modes of interactions. J Gen Physiol. 2009;133(3):257–62. https://doi.org/10.1085/jgp.200810138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–13.

    Article  CAS  PubMed  Google Scholar 

  19. Schepersm RJ, Ringkamp M. Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev. 2010;34(2):177–84. https://doi.org/10.1016/j.neubiorev.2009.10.003.

    Article  CAS  Google Scholar 

  20. Johnson JM. Non-thermoregulatory control of human skin blood flow. J Appl Physiol. 1986;61:1613–22.

    Article  CAS  PubMed  Google Scholar 

  21. Cheshire WP, Low PA. Disorders of sweating and thermoregulation. Continuum: lifelong learning in. Neurology. 2007;13(6):143–64.

    Google Scholar 

  22. Low PA, Sletten DM. Laboratory evaluation of autonomic failure. In: Low PA, Banarroch EE, editors. Clinical autonomic disorders: evaluation and management. 3rd ed. Philadelphia: Wolters Kluwer-Lippincott Williams & Wilkins Publishers; 2007. p. 130–63.

    Google Scholar 

  23. Folgueras AR, Valdés-Sánchez T, Llano E, Menéndez L, Baamonde A, Denlinger BL, et al. Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. Proc Natl Acad Sci U S A. 2009;106:16451–6. https://doi.org/10.1073/pnas.0908507106.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol. 2005;209:425–38. https://doi.org/10.1007/s00429-005-0462-1.

    Article  Google Scholar 

  25. Armour JA, Murphy DA, Yuan B-X, MacDonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.

    Article  CAS  PubMed  Google Scholar 

  26. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  27. Hougland MW, Durkee KH, Hougland AE. Innervation of Guinea pig heart by neurons sensitive to capsaicin. J Auton Nerv Syst. 1986;15:217–25.

    Article  CAS  PubMed  Google Scholar 

  28. Khabarova AY. The afferent innervation of the heart. New York: Consultants Bureau; 1963. p. 1–475.

    Google Scholar 

  29. Kuo DC, Gravitz JJ, DeGroat WC. Tracing of afferent and efferent pathways in the left cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res. 1984;321:111–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ardell JL. Intrathoracic neuronal regulation of cardiac function. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 118–52.

    Google Scholar 

  31. Armor JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93:165–76.

    Article  Google Scholar 

  32. Malliani A. Cardiovascular sympathetic afferent fibers. In: Adrian RH, et al., editors. Reviews of physiology, biochemistry, and pharmacology, vol. 94. Berlin: Springer; 1982. p. 11–74.

    Google Scholar 

  33. Schwartz PJ, Foreman RD. Cardiac pain, sympathetic afferents, and life-threatening arrhythmias. J Cardiovasc Electrophysiol. 1991;2:s100–13.

    Article  Google Scholar 

  34. White JC, Bland EF. Cardiac pain, anatomic pathways and physiologic mechanisms. Circulation. 1957;16:644–55.

    Article  CAS  PubMed  Google Scholar 

  35. Pan HL, Chen SR. Sensing tissue ischemia: another new function for capsaicin receptors? Circulation. 2004;110:1826–31. https://doi.org/10.1161/01.CIR.0000142618.20278.7A.

    Article  PubMed  Google Scholar 

  36. Uchida Y, Murao S. Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn Heart J. 1974;15:84–91. https://doi.org/10.1536/ihj.15.84.

    Article  CAS  PubMed  Google Scholar 

  37. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24. https://doi.org/10.1038/39807.

    Article  CAS  PubMed  Google Scholar 

  38. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–13.

    Article  CAS  PubMed  Google Scholar 

  39. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21(3):531–43.

    Article  CAS  PubMed  Google Scholar 

  40. Schultz HD, Ustinova EE. Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings. Cardiovasc Res. 1998;38:348–55. https://doi.org/10.1016/S0008-6363(98)00031-5.

    Article  CAS  PubMed  Google Scholar 

  41. Christensen AP, Corey DP. TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci. 2007;8:510–21. https://doi.org/10.1038/nrn2149.

    Article  CAS  PubMed  Google Scholar 

  42. Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res. 1978;43:512–9.

    Article  CAS  PubMed  Google Scholar 

  43. Webb SW, Adgey AA, Pantridge JF. Autonomic disturbance at onset of acute myocardial infarction. Br Med J. 1972;3:89–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koren G, Weiss AT, Ben-David Y, Hasin Y, Luria MH, Gotsman MS. Bradycardia and hypotension following reperfusion with streptokinase (Bezold-Jarisch reflex): a sign of coronary thrombolysis and myocardial salvage. Am Heart J. 1986;112:468–71.

    Article  CAS  PubMed  Google Scholar 

  45. Von Bezold A, Hirt L. Uber die physiologischen Wirkungen des essigsauren veratrins. Untersuch Physiol Lab Wurzburg. 1867;1:75–156.

    Google Scholar 

  46. Southerland EM, Milhorn DM, Foreman RD, Linderoth B, DeJongste MJ, Armour JA, et al. Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am J Physiol Heart Circ Physiol. 2007;292(1):H311–7. https://doi.org/10.1152/ajpheart.00087.2006.

    Article  CAS  PubMed  Google Scholar 

  47. Schlereth T, Birklein F. The sympathetic nervous system and pain. NeuroMolecular Med. 2008;10(3):141–7. https://doi.org/10.1007/s12017-007-8018-6.

    Article  CAS  PubMed  Google Scholar 

  48. Christianson JA, Riekhof JT, Wright DE. Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Exp Neurol. 2003;179:188–99.

    Article  CAS  PubMed  Google Scholar 

  49. Ieda M, Fukuda K, Hisaka Y, Kimura K, Kawaguchi H, Fujita J, et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest. 2004;113:876–84. https://doi.org/10.1172/JCI19480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994;77:627–38.

    Article  PubMed  Google Scholar 

  51. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell. 1994;76:1001–11.

    Article  CAS  PubMed  Google Scholar 

  52. Fernyhough P, Diemel LT, Hardy J, Brewster WJ, Mohiuddin L, Tomlinson DR. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci. 1995;7:1107–10.

    Article  CAS  PubMed  Google Scholar 

  53. Unger JW, Klitzsch T, Pera S, Reiter R. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord. Exp Neurol. 1998;153:23–34. https://doi.org/10.1006/exnr.1998.6856.

    Article  CAS  PubMed  Google Scholar 

  54. Ieda M, Kanazawa H, Ieda Y, Kimura K, Matsumura K, Tomita Y, et al. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation. 2006;114(22):2351–63. https://doi.org/10.1161/CIRCULATIONAHA.106.627588.

    Article  CAS  PubMed  Google Scholar 

  55. Zahn S, Leis S, Schick C, Schmelz M, Birklein F. No alpha-adrenoreceptor induced C-fiber activation in healthy human skin. J Appl Physiol. 2004;96:1380–4. https://doi.org/10.1152/japplphysiol.00990.2003.

    Article  PubMed  Google Scholar 

  56. Drummond PD, Lipnicki DM. Noradrenaline provokes axon reflex hyperaemia in the skin of the human forearm. J Auton Nerv Syst. 1999;77:39–44.

    Article  CAS  PubMed  Google Scholar 

  57. Fuchs PN, Meyer RA, Raja SN. Heat, but not mechanical hyperalgesia, following adrenergic injections in normal human skin. Pain. 2001;90:15–23.

    Article  CAS  PubMed  Google Scholar 

  58. Drummond PD. Alpha-1 adrenoceptor stimulation triggers axon-reflex vasodilatation in human skin. Auton Neurosci. 2009a;151:159–63. https://doi.org/10.1016/j.autneu.2009.07.013.

    Article  CAS  PubMed  Google Scholar 

  59. Drummond PD. Alpha(1)-Adrenoceptors augment thermal hyperalgesia in mildly burnt skin. Eur J Pain. 2009b;13:273–9. https://doi.org/10.1016/j.ejpain.2008.04.008.

    Article  CAS  PubMed  Google Scholar 

  60. Vogelsang M, Heyer G, Hornstein OP. Acetylcholine induces different cutaneous sensations in atopic and non-atopic subjects. Acta Derm Venereol. 1995;75:434–6.

    CAS  PubMed  Google Scholar 

  61. Schlereth T, Brosda N, Birklein F. Spreading of sudomotor axon reflexes in human skin. Neurology. 2005;26:1417–21. https://doi.org/10.1212/01.WNL.0000158473.60148.FE.

    Article  Google Scholar 

  62. Bernardini N, Sauer SK, Haberberger R, Fischer MJ, Reeh PW. Excitatory nicotinic and desensitizing muscarinic (M2) effects on C-nociceptors in isolated rat skin. J Neurosci. 2001;21:3295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyan JA, Broome CS, Afan AM. Coordinated host defense through an integration of the neural, immune and haemopoietic systems. Domest Anim Endocrinol. 1998;15:297–304.

    Article  CAS  PubMed  Google Scholar 

  64. Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, et al. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci. 2017;134:1–21. https://doi.org/10.1016/j.jphs.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  65. Qu C, Brinck-Jensen NS, Zang M, Chen K. Monocyte-derived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int J Infect Dis. 2014;19:1–5. https://doi.org/10.1016/j.ijid.2013.09.023.

    Article  CAS  PubMed  Google Scholar 

  66. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9:679–91. https://doi.org/10.1038/nri2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haniffa M, Gunawan M, Jardine L. Human skin dendritic cells in health and disease. J Dermatol Sci. 2015;77:85–92. https://doi.org/10.1038/nri2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li X, Han Y, Sun E. Sniping the scout: targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res. 2016;107:27–41. https://doi.org/10.1016/j.phrs.2016.02.023.

    Article  CAS  PubMed  Google Scholar 

  69. Alnaeeli M, Park J, Mahamed D, Penninger JM, Teng YT. Dendritic cells at the osteo-immune interface: implications for inflammation-induced bone loss. J Bone Miner Res. 2007;22:775–80. https://doi.org/10.1359/jbmr.070314.

    Article  CAS  PubMed  Google Scholar 

  70. Alnaeeli M, Teng YT. Dendritic cells: a new player in osteoimmunology. Curr Mol Med. 2009;9:893–910.

    Article  CAS  PubMed  Google Scholar 

  71. Misery L. Langerhans cells in the neuro-immuno-cutaneous system. J Neuroimmunol. 1998;89:83–7.

    Article  CAS  PubMed  Google Scholar 

  72. Hosoi J, Murphy GF, Egan CL, Lerner EA, Grabbe S, Asahina A, et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 1993;363:159–63.

    Article  CAS  PubMed  Google Scholar 

  73. Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol. 1998;7:81–96.

    Article  CAS  PubMed  Google Scholar 

  74. Egan CL, Viglione-Schneck MJ, Walsh LJ, Green B, Trojanowski JQ, Whitaker-Menezes D, et al. Characterization of unmyelinated axons uniting epidermal and dermal immune cells in primate and murine skin. J Cutan Pathol. 1998;25:20–9.

    Article  CAS  PubMed  Google Scholar 

  75. Asahina A, Hosoi J, Grabbe S, Granstein RD. Modulation of Langerhans cell function by epidermal nerves. J Allergy Clin Immunol. 1995;96:1178–82.

    Article  CAS  PubMed  Google Scholar 

  76. Staniek V, Misery L, Dezutter-Dambuyant C, Claudy A, Schmitt D. Expression of neuropeptides on human epidermal Langerhans cells. Adv Exp Med Biol. 1995;378:147–50.

    Article  CAS  PubMed  Google Scholar 

  77. Lambert RW, Granstein RD. Neuropeptides and Langerhans cells. Exp Dermatol. 1998;7:73–80.

    Article  CAS  PubMed  Google Scholar 

  78. Torii H, Yan Z, Hosoi J, Granstein RD. Expression of neurotrophic factors and neuropeptide receptors by Langerhans cells and the Langerhans cell-like cell line XS52: further support for a functional relationship between Langerhans cells and epidermal nerves. J Invest Dermatol. 1997;109:586–91.

    Article  CAS  PubMed  Google Scholar 

  79. Maestroni GJ. Sympathetic nervous system influence on the innate immune response. Ann N Y Acad Sci. 2006;1069:195–207. https://doi.org/10.1196/annals.1351.017.

    Article  PubMed  Google Scholar 

  80. Heijnen CJ, Rouppe van der Voort C, Wulffraat N, van der Net J, Kuis W, Kavelaars A. Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J Neuroimmunol. 1996;71:223–6.

    Article  CAS  PubMed  Google Scholar 

  81. Howarth D, Burstal R, Hayes C, Lan L, Lantry G. Autonomic regulation of lymphatic flow in the lower extremity demonstrated on lymphoscintigraphy in patients with reflex sympathetic dystrophy. Clin Nucl Med. 1999;24:383–7.

    Article  CAS  PubMed  Google Scholar 

  82. Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE. Alpha1- adrenergic receptors positively regulate toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther. 2011;338:648–57. https://doi.org/10.1124/jpet.110.178012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Masini E, Blandina P, Mannaioni PF. Mast cell receptors controlling histamine release: influences on the mode of action of drugs used in the treatment of adverse drug reactions. Klin Wochenschr. 1982;60:1031–8. https://doi.org/10.1007/BF01716967.

    Article  CAS  PubMed  Google Scholar 

  84. Chong LK, Morice AH, Yeo WW, Schleimer RP, Peachell PT. Functional desensitization of beta agonist responses in human lung mast cells. Am J Respir Cell Mol Biol. 1995;13:540–6. https://doi.org/10.1165/ajrcmb.13.5.7576689.

    Article  CAS  PubMed  Google Scholar 

  85. Chong LK, Chess-Williams R, Peachell PT. Pharmacological characterisation of the beta-adrenoceptor expressed by human lung mast cells. Eur J Pharmacol. 2002;437:1–7. https://doi.org/10.1016/S0014-2999(02)01263-3.

    Article  CAS  PubMed  Google Scholar 

  86. Wang XS, Lau HY. Beta-adrenoceptor-mediated inhibition of mediator release from human peripheral blood-derived mast cells. Clin Exp Pharmacol Physiol. 2006;33:746–50. https://doi.org/10.1111/j.1440-1681.2006.04435.x.

    Article  CAS  PubMed  Google Scholar 

  87. Gebhardt T, Gerhard R, Bedoui S, Erpenbeck VJ, Hoffmann MW, Manns MP, et al. Beta2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur J Immunol. 2005;35:1124–32. https://doi.org/10.1002/eji.200425869.

    Article  CAS  PubMed  Google Scholar 

  88. Schulze W, Fu ML. Localization of alpha 1-adrenoceptors in rat and human hearts by immunocytochemistry. Mol Cell Biochem. 1996;163:159–65. https://doi.org/10.1007/BF00408653.

    Article  PubMed  Google Scholar 

  89. Prey S, Leaute-Labreze C, Pain C, Moisan F, Vergnesm P, Loot M, et al. Mast cells as possible targets of propranolol therapy: an immunohistological study of beta-adrenergic receptors in infantile haemangiomas. Histopathology. 2014;65:436–9. https://doi.org/10.1111/his.12421.

    Article  PubMed  Google Scholar 

  90. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9. https://doi.org/10.1038/nature01321.

    Article  CAS  PubMed  Google Scholar 

  91. Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19:493–9. https://doi.org/10.1016/j.bbi.2005.03.015.

    Article  CAS  PubMed  Google Scholar 

  92. Tracey KJ. Physiology and immunology of the cholinergic anti-inflammatory pathway. J Clin Invest. 2007;117:289–96. https://doi.org/10.1172/JCI30555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pereira MR, Leite PE. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J Cell Physiol. 2016;231:1862–9. https://doi.org/10.1002/jcp.25307.

    Article  CAS  PubMed  Google Scholar 

  94. Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther. 2017; https://doi.org/10.1016/j.pharmthera.2017.05.002.

    Article  CAS  Google Scholar 

  95. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62. https://doi.org/10.1038/35013070.

    Article  CAS  PubMed  Google Scholar 

  96. Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun. 1993;7:191–204. https://doi.org/10.1006/brbi.1993.1021.

    Article  CAS  PubMed  Google Scholar 

  97. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98–101. https://doi.org/10.1126/science.1209985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209:1057–68. https://doi.org/10.1084/jem.20120571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wulfing C, Gunther HS. Dendritic cells and macrophages neurally hard-wired in the lymph node. Sci Rep. 2015;5:16866. https://doi.org/10.1038/srep16866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Salamone G, Lombardi G, Gori S, Nahmod K, Jancic C, Amaral MM, et al. Cholinergic modulation of dendritic cell function. J Neuroimmunol. 2011;236:47–56. https://doi.org/10.1016/j.jneuroim.2011.05.007.

    Article  CAS  PubMed  Google Scholar 

  101. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 2011;58(5):500–7. https://doi.org/10.1097/FJC.0b013e31822b7204.

    Article  CAS  PubMed  Google Scholar 

  102. Frangogiannis NG, Youker KA, Rossen RD, Gwechenberger M, Lindsey MH, Mendoza LH, et al. Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol. 1998;30:2567–76. https://doi.org/10.1006/jmcc.1998.0829.

    Article  CAS  PubMed  Google Scholar 

  103. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971;29:437–45.

    Article  CAS  PubMed  Google Scholar 

  104. Vanhoutee PM, Verbeuren TJ. Inhibition by acetylcholine of the norepinephrine release evoked by potassium in canine saphenous veins. Circ Res. 1976;39:263–9.

    Article  CAS  PubMed  Google Scholar 

  105. Levy MN, Blattberg B. Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res. 1976;38:81–4.

    Article  CAS  PubMed  Google Scholar 

  106. Manabe N, Foldes FF, Torocsik A, Nagashima H, Goldiner PL, Vizi ES. Presynaptic interaction between vagal and sympathetic innervation in the heart: modulation of acetylcholine and noradrenaline release. J Auton Nerv Syst. 1991;32:233–42.

    Article  CAS  PubMed  Google Scholar 

  107. Schwertfeger E, Klein T, Vonend O, Oberhauser V, Stegbauer J, Rump LC. Neuropeptide Y inhibits acetylcholine release in human heart atrium by activation of Y2-receptors. Naunyn Schmiedeberg’s Arch Pharmacol. 2004;369:455–61. https://doi.org/10.1007/s00210-004-0930-9.

    Article  CAS  Google Scholar 

  108. Wetzel GT, Goldstein D, Brown JH. Acetylcholine release from rat atria can be regulated through an alpha 1-adrenergic receptor. Circ Res. 1985;56:763–6.

    Article  CAS  PubMed  Google Scholar 

  109. Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976;1:239–48.

    Article  CAS  PubMed  Google Scholar 

  110. Potter EK, McCloskey DI. Peripheral inhibition of cardiac vagal action by sympathetic adrenergic stimulation. Proc Aust Soc Clin Exp Pharmacol. 1982;13:99P.

    Google Scholar 

  111. Potter E. Presynaptic inhibition of cardiac vagal postganglionic nerves by neuropeptide Y. Neurosci Lett. 1987;83:101–6.

    Article  CAS  PubMed  Google Scholar 

  112. Smith-White MA, Hardy TA, Brock JA, Potter EK. Effects of a selective neuropeptide Y Y2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions. Br J Pharmacol. 2001;132:861–8. https://doi.org/10.1038/sj.bjp.0703879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith-White MA, Herzog H, Potter EK. Role of neuropeptide Y Y2 receptors in modulation of cardiac parasympathetic neurotransmission. Regul Pept. 2002;103:105–11.

    Article  CAS  PubMed  Google Scholar 

  114. Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ. Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol. 2008;44:477–85. https://doi.org/10.1016/j.yjmcc.2007.10.001.

    Article  CAS  PubMed  Google Scholar 

  115. Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, et al. The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol. 2012;52:667–76. https://doi.org/10.1016/j.yjmcc.2011.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther. 2014;16(6):504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Malliani A, Schwartz PJ, Zanchetti A. A sympathetic reflex elicited by experimental coronary occlusion. Am J Phys. 1969;217:703–9.

    Article  CAS  Google Scholar 

  118. Foreman RD, Linderoth B, Ardell JL, Barron KW, Chandler MJ, Hull SS, et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for therapeutic use in angina pectoris. Cardiovasc Res. 2000;47:367–75.

    Article  CAS  PubMed  Google Scholar 

  119. Kingery WS. A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes. Pain. 1997;73:123–39.

    Article  CAS  PubMed  Google Scholar 

  120. Ratti C, Nordio A, Resmini G, Murena L. Post-traumatic complex regional pain syndrome: clinical features and epidemiology. Clin Cases Miner Bone Metab. 2015;12:11–6. https://doi.org/10.11138/ccmbm/2015.12.3s.011.

    Article  PubMed  Google Scholar 

  121. De Rooij AM, Perez RS, Huygen FJ, van Eijs F, van Kleef M, Bauer MC, et al. Spontaneous onset of complex regional pain syndrome. Eur J Pain. 2010;14:510–3. https://doi.org/10.1016/j.ejpain.2009.08.007.

    Article  PubMed  Google Scholar 

  122. Birklein F, Dimova V. Complex regional pain syndrome-up-to-date. Pain Rep. 2017;2:e624. https://doi.org/10.1097/PR9.0000000000000624.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bean DJ, Johnson MH, Kydd RR. The outcome of complex regional pain syndrome type 1: a systematic review. J Pain. 2014;15:677–90. https://doi.org/10.1016/j.jpain.2014.01.500.

    Article  PubMed  Google Scholar 

  124. Schwartzman RJ, Liu JE, Smullens SN, Hyslop T, Tahmoush AJ. Long-term outcome following sympathectomy for complex regional pain syndrome type 1 (RSD). J Neurol Sci. 1997;150:149–52.

    Article  CAS  PubMed  Google Scholar 

  125. Singh B, Moodley J, Shaik AS, Robbs JV. Sympathectomy for complex regional pain syndrome. J Vasc Surg. 2003;37:508–11. https://doi.org/10.1067/mva.2003.78.

    Article  PubMed  Google Scholar 

  126. Alkosha HM, Elkiran YM. Predictors of long-term outcome of thoracic sympathectomy in patients with complex regional pain syndrome type 2. World Neurosurg. 2016;92:74–82. https://doi.org/10.1016/j.wneu.2016.04.101.

    Article  PubMed  Google Scholar 

  127. Russo M, Georgius P, Santarelli DM. A new hypothesis for the pathophysiology of complex regional pain syndrome. Med Hypotheses. 2018;119:41–53. https://doi.org/10.1016/j.mehy.2018.07.026.

    Article  CAS  PubMed  Google Scholar 

  128. Kohr D, Tschernatsch M, Schmitz K, Singh P, Kaps M, Schäfer KH, et al. Autoantibodies in complex regional pain syndrome bind to a differentiation-dependent neuronal surface autoantigen. Pain. 2009;143:246–51. https://doi.org/10.1016/j.pain.2009.03.009.

    Article  CAS  PubMed  Google Scholar 

  129. Kohr D, Singh P, Tschernatsch M, Kaps M, Pouokam E, Diener M, et al. Autoimmunity against the beta2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain. 2011;152:2690–700. https://doi.org/10.1016/j.pain.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  130. Tékus V, Hajna Z, Borbély É, Markovics A, Bagoly T, Szolcsányi J, et al. A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome. Pain. 2014;155:299–308. https://doi.org/10.1016/j.pain.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  131. Cannon WB, Rosenbleuth A. The supersensitivity of denervated structures. A law of denervation. New York: Macmillan; 1999.

    Google Scholar 

  132. Perl ER. Causalgia, pathological pain, and adrenergic receptors. Proc Natl Acad Sci U S A. 1999;96:7664–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen SS, Zhang JM. Progress in sympathetically mediated pathological pain. J Anesth Perioper Med. 2015;2:216–25. https://doi.org/10.24015/JAPM.2015.0029.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gori T, Fineschi M. Two coronary “orphan” diseases in search of clinical consideration: coronary syndromes x and y. Cardiovasc Ther. 2012;30:58–65. https://doi.org/10.1111/j.1755-5922.2010.00232.x.

    Article  Google Scholar 

  135. Crea F, Lanza GA. Angina pectoris and normal coronary arteries: cardiac syndrome X. Heart. 2004;90:457–63.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Melikian N, De Bruyne B, Fearon WF, MacCarthy PA. The pathophysiology and clinical course of the normal coronary angina syndrome (cardiac syndrome X). Prog Cardiovasc Dis. 2008;50:294–310. https://doi.org/10.1016/j.pcad.2007.01.003.

    Article  PubMed  Google Scholar 

  137. Cannon RO 3rd, Quyyumi AA, Schenke WH, Fananapazir L, Tucker EE, Gaughan AM, et al. Abnormal cardiac sensitivity in patients with chest pain and normal coronary arteries. J Am Coll Cardiol. 1990;16:1359–66.

    Article  PubMed  Google Scholar 

  138. Beltrame JF. Advances in understanding the mechanisms of angina pectoris in cardiac syndrome X. Eur Heart J. 2005;26:946–8. https://doi.org/10.1093/eurheartj/ehi242.

    Article  PubMed  Google Scholar 

  139. Turiel M, Galassi AR, Glazier JJ, Kaski JC, Maseri A. Pain threshold and tolerance in women with syndrome X and women with stable angina pectoris. Am J Cardiol. 1987;60:503–7.

    Article  CAS  PubMed  Google Scholar 

  140. Falcone C, Sconocchia R, Guasti L, Codega S, Montemartini C, Specchia G. Dental pain threshold and angina pectoris in patients with coronary artery disease. J Am Coll Cardiol. 1988;12(2):348–52.

    Article  CAS  PubMed  Google Scholar 

  141. Legerqvist B, Sylven C, Waldenstrom A. Lower threshold for adenosine-induced chest pain in patients with angina and normal coronary angiograms. Br Heart J. 1992;68:282–5.

    Article  Google Scholar 

  142. Rosen SD, Paulesu E, Wise RJ, Camici PG. Central neural contribution to the perception of chest pain in cardiac syndrome X. Heart. 2002;87:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Valeriani M, Sestito A, Le Pera D, De Armas L, Infusino F, Maiese T, et al. Abnormal cortical pain processing in patients with cardiac syndrome X. Eur Heart J. 2005;26:975–82. https://doi.org/10.1093/eurheartj/ehi229.

    Article  PubMed  Google Scholar 

  144. Agrawal S, Mehta PK, Bairey Merz CN. Cardiac Syndrome X: update 2014. Cardiol Clin. 2014;32:463–78. https://doi.org/10.1016/j.ccl.2014.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Madaric J, Bartunek J, Verhamme K, Penicka M, Van Schuerbeeck E, Nellens P, et al. Hyperdynamic myocardial response to beta-adrenergic stimulation in patients with chest pain and normal coronary arteries. J Am Coll Cardiol. 2005;46:1270–5. https://doi.org/10.1016/j.jacc.2005.06.052.

    Article  PubMed  Google Scholar 

  146. Rosano GMC, Tousoulis D, McFadden E, Clarke J, Davies GJ, Kaski JC. Effects of neuropeptideY on coronary artery vasomotion in patients with microvascular angina. Int J Cardiol. 2017;238:123–7. https://doi.org/10.1016/j.ijcard.2017.03.024.

    Article  PubMed  Google Scholar 

  147. Assali AR, Jabara Z, Shafer Z, Solodky A, Herz I, Sclarovsky E, et al. Insulin resistance is increased by transdermal estrogen therapy in postmenopausal women with cardiac syndrome X. Cardiology. 2001;95(1):31–4. https://doi.org/10.1159/000047340.

    Article  CAS  PubMed  Google Scholar 

  148. Chen YX, Luo NS, Lin YQ, Yuan WL, Xie SL, Nie RQ, Wang JF. Selective estrogen receptor modulators promising for cardiac syndrome X. J Postgrad Med. 2010;56(4):328–31. https://doi.org/10.4103/0022-3859.70936.

    Article  CAS  PubMed  Google Scholar 

  149. Long M, Huang Z, Zhuang X, Huang Z, Guo Y, Liao X, et al. Association of inflammation and endothelial dysfunction with coronary microvascular resistance in patients with cardiac syndrome X. Arq Bras Cardiol. 2017;109(5):397–403. https://doi.org/10.5935/abc.20170149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2014;308(3):H157–82. https://doi.org/10.1152/ajpheart.00457.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Davidson EP, Coppey LJ, Yorek MA. Activity and expression of the vanilloid receptor 1 (TRPV1) is altered by long-term diabetes in epineurial arterioles of the rat sciatic nerve. Diabetes Metab Res Rev. 2006;22:211–9. https://doi.org/10.1002/dmrr.599.

    Article  CAS  PubMed  Google Scholar 

  152. Shipp N, Thanigaimani S, Lau D, Brooks A, Kuklik P, Baumert M. TRPV1 down-regulation in syndrome X: its role in AF susceptibility. Heart Lung Circ. 2011;20S:S1–S155. https://doi.org/10.1016/j.hlc.2011.05.144.. Abstracts S57

    Article  Google Scholar 

  153. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2008;294:H2489–96. https://doi.org/10.1152/ajpheart.01191.2007.

    Article  CAS  PubMed  Google Scholar 

  154. Guarini G, Ohanyan VA, Kmetz JG, DelloStritto DJ, Thoppil RJ, Thodeti CK, et al. Disruption of TRPV1-mediated coupling of coronary blood flow to cardiac metabolism in diabetic mice: role of nitric oxide and BK channels. Am J Physiol Heart Circ Physiol. 2012;303(2):H216–23. https://doi.org/10.1152/ajpheart.00011.

    Article  CAS  PubMed  Google Scholar 

  155. Zhao JF, Ching LC, Kou YR, Lin SJ, Wei J, Shyue SK, et al. Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages: role of liver X receptor α. Mediat Inflamm. 2013;925171. https://doi.org/10.1155/2013/925171.

    Google Scholar 

  156. Huang W, Rubinstein J, Prieto AR, Thang LV, Wang DH. Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction. Hypertension. 2009;53:243–50. https://doi.org/10.1161/HYPERTENSIONAHA.108.118349.

    Article  CAS  PubMed  Google Scholar 

  157. Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension. 2014;64:745–55. https://doi.org/10.1161/HYPERTENSIONAHA.114.03699.

    Article  CAS  PubMed  Google Scholar 

  158. Wang W, Schultz HD, Ma R. Cardiac sympathetic afferent sensitivity is enhanced in heart failure. Am J Physiol Heart Circ Physiol. 1999;277:H812–7.

    Article  CAS  Google Scholar 

  159. Yoshie K, Rajendran PS, Massoud L, Kwon O, Tadimeti V, Salavatian S, et al. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am J Physiol Heart Circ Physiol. 2018;314:H954–66. https://doi.org/10.1152/ajpheart.00593.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Leriche R, Fontaine R. L’anesthésie isolée du ganglion étoile. Sa technique, ses indications, ses résultats. Presse Med. 1934;42:849–50.

    Google Scholar 

  161. Gofeld M, Bhatia A, Abbas S, Ganapathy S, Johnson M. Development and validation of a new technique for ultrasound-guided stellate ganglion block. Reg Anesth Pain Med. 2009;34:475–9. https://doi.org/10.1097/AAP.0b013e3181b494de.

    Article  PubMed  Google Scholar 

  162. Yucel I, Demiraran Y, Ozturan K, Degirmenci E. Complex regional pain syndrome type I: efficacy of stellate ganglion blockade. J Orthop Traumatol. 2009;10:179–83. https://doi.org/10.1007/s10195-009-0071-5.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hashmonai M, Kopelman D. History of sympathetic surgery. Clin Auton Res. 2003;13:I6–9. https://doi.org/10.1007/s10286-003-1103-5.

    Article  PubMed  Google Scholar 

  164. Hughes J. Endothoracic sympathectomy. Proc R Soc Med. 1942;35:585–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. De Andrade Filho LO, Kuzniec S, Wolosker N, Yazbek G, Kauffman P, Milanez de Campos JR. Technical difficulties and complications of sympathectomy in the treatment of hyperhidrosis: an analysis of 1731 cases. Ann Vasc Surg. 2013;27:447–53. https://doi.org/10.1016/j.avsg.2012.05.026.

    Article  PubMed  Google Scholar 

  166. Lin TS, Kuo SJ, Chou MC. Uniportal endoscopic thoracic sympathectomy for treatment of palmar and axillary hyperhidrosis: analysis of 2000 cases. Neurosurgery. 2002;51(5 Suppl):S84–7.

    PubMed  Google Scholar 

  167. Vannucci F, Araújo JA. Thoracic sympathectomy for hyperhidrosis: from surgical indications to clinical results. J Thorac Dis. 2017;9(Suppl 3):S178–92. https://doi.org/10.21037/jtd.2017.04.04.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Dai ZJ, Tu YR, Li X, et al. Expression and significance of choline acetyltransferase and vasoactive intestinal peptide in thoracic sympathetic ganglion of patients with palmar hyperhidrosis. Chin J Exp Surg. 2007;24:1017–8.

    CAS  Google Scholar 

  169. Chen JP, Chen RF, Peng AJ, Xu CH, Li GY. Is compensatory hyperhidrosis after thoracic sympathicotomy in palmar hyperhidrosis patients related to the excitability of thoracic sympathetic ganglions? J Thorac Dis. 2017;9(9):3069–75. https://doi.org/10.21037/jtd.2017.08.100.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Noppen M, Dendale P, Hagers Y, Herregodts P, Vincken W, D’Haens J. Changes in cardiocirculatory autonomic function after thoracoscopic upper dorsal sympathicolysis for essential hyperhidrosis. J Auton Nerv Syst. 1996;60(3):115–20.

    Article  CAS  PubMed  Google Scholar 

  171. Kardos A, Taylor DJ, Thompson C, Styles P, Hands L, Collin J, et al. Sympathetic denervation of the upper limb improves forearm exercise performance and skeletal muscle bioenergetics. Circulation. 2000;101(23):2716–20.

    Article  CAS  PubMed  Google Scholar 

  172. Jonnesco T. Traitement chirurgical de l’angine de poitrine par la résection du sympathique cervico-thoracique [French]. Presse Méd. 1921;20:221–30.

    Google Scholar 

  173. Leriche R, Fontaine R. Rôle du ganglion étoile gauche dans le déterminisme de la crise de l’angine de poitrine [French]. C R Acad Sci. 1929;188:279–80.

    Google Scholar 

  174. Lindgren I, Olivecrona H. Surgical treatment of angina pectoris. J Neurosurg. 1947;4:19–39.

    Article  CAS  PubMed  Google Scholar 

  175. Burnett CF, Evans JA. Follow-up report on resection of the anginal pathway in thirty-three patients. JAMA. 1956;162:709–12.

    Article  Google Scholar 

  176. Cox WV. Influence of stellate ganglion block on angina pectoris and the post-exercise ECG. Am J Med. 1956;252:289–95.

    Google Scholar 

  177. Schwartz PJ. The rationale and the role of left stellectomy for the prevention of malignant arrhythmias. Ann N Y Acad Sci. 1984;427:199–221.

    Article  CAS  PubMed  Google Scholar 

  178. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285:903–4.

    Article  CAS  PubMed  Google Scholar 

  179. Schwartz PJ, Malliani A. Electrical alternation of the T wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long QT syndrome. Am Heart J. 1975;89:45–50.

    Article  CAS  PubMed  Google Scholar 

  180. Schwartz PJ, Locati EH, Moss AJ, Crampton RS, Trazzi R, Ruberti U. Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome: a worldwide report. Circulation. 1991;84:503–11.

    Article  CAS  PubMed  Google Scholar 

  181. Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long QT syndrome. Circulation. 2004;109:1826–33. https://doi.org/10.1161/01.CIR.0000125523.14403.1E.

    Article  PubMed  Google Scholar 

  182. Schwartz PJ, Stone HL, Brown AM. Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am Heart J. 1976;92:589–99.

    Article  CAS  PubMed  Google Scholar 

  183. Schwartz PJ, Billman GE, Stone HL. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction: an experimental preparation for sudden cardiac death. Circulation. 1984;69:790–800.

    Article  CAS  PubMed  Google Scholar 

  184. Schwartz PJ. Sympathetic imbalance and cardiac arrhythmias. In: Randall WC, editor. Nervous control of cardiovascular function. New York: Oxford University Press; 1984. p. 225–52.. Ch. 10.

    Google Scholar 

  185. Schwartz PJ, Snebold NG, Brown AM. Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol. 1976;37:1034–40.

    Article  CAS  PubMed  Google Scholar 

  186. De Ferrari GM, Dusi V, Spazzolini C, Bos JM, Abrams DJ, Berul CI, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015;131:2185–93. https://doi.org/10.1161/CIRCULATIONAHA.115.015731.

    Article  PubMed  Google Scholar 

  187. Odero A, Bozzani A, De Ferrari GM, Schwartz PJ. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm. 2010;7(8):1161–5. https://doi.org/10.1016/j.hrthm.2010.03.046.

    Article  PubMed  Google Scholar 

  188. Coleman MA, Bos MJ, Johnson JN, Owen HJ, Deschamps C, Moir C, et al. Videoscopic left cardiac sympathetic denervation for patients with recurrent ventricular fibrillation/malignant ventricular arrhythmia syndromes besides congenital Long-QT syndrome. Circ Arrhythm Electrophysiol. 2012;5:782–8. https://doi.org/10.1161/CIRCEP.112.971754.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm. 2014;11:360–6. https://doi.org/10.1016/j.hrthm.2013.11.028.

    Article  PubMed  Google Scholar 

  190. Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017;69:3070–80. https://doi.org/10.1016/j.jacc.2017.04.035.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ajijola OA, Wisco JJ, Lambert HW, Mahajan A, Stark E, Fishbein MC, et al. Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol. 2012;5:1010–116. https://doi.org/10.1161/CIRCEP.112.972836.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ajijola OA, Hoover DB, Simerly TM, Brown TC, Yanagawa J, Biniwale RM, et al. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI Insight. 2017;2:e94715. https://doi.org/10.1172/jci.insight.94715.

    Article  PubMed Central  Google Scholar 

  193. Nguyen BL, Li H, Fishbein MC, Lin SF, Gaudio C, Chen PS, et al. Acute myocardial infarction induces bilateral stellate ganglia neural re modeling in rabbits. Cardiovasc Pathol. 2012;21:143–8. https://doi.org/10.1016/j.carpath.2011.08.001.

    Article  PubMed  Google Scholar 

  194. Ajijola OA, Yagishita D, Reddy NK, Yamakawa K, Vaseghi M, Downs AM, et al. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: neuropeptide and morphologic changes. Heart Rhythm. 2015;12:1027–35. https://doi.org/10.1016/j.hrthm.2015.01.045.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Rizzo S, Basso C, Troost D, Aronica E, Frigo AC, Driessen AH, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7(2):224–9. https://doi.org/10.1161/CIRCEP.113.001184.

    Article  CAS  PubMed  Google Scholar 

  196. Atallah J, Fynn-Thompson F, Cecchin F, Di Bardino DJ, Walsh EP, Berul CI. Video-assisted thoracoscopic cardiac denervation: potential novel therapeuticoption for children with intractable ventricular arrhythmias. Ann Thorac Surg. 2008;86(5):1620–5. https://doi.org/10.1016/j.athoracsur.2008.07.006.

    Article  PubMed  Google Scholar 

  197. Methangkool E, Chua JH, Gopinath A, Shivkumar K, Mahajan A. Anesthetic considerations for thoracoscopic sympathetic ganglionectomy to treatventricular tachycardia storm: a single-center experience. J Cardiothorac Vasc Anesth. 2014;28(1):69–75. https://doi.org/10.1053/j.jvca.2013.08.019.

    Article  PubMed  Google Scholar 

  198. Gonzalez-Rivas D. Uniportal thoracoscopic surgery: from medical thoracoscopy to non-intubated uniportal video-assisted major pulmonary resections. Ann Cardiothorac Surg. 2016;5(2):85–91. https://doi.org/10.21037/acs.2016.03.07.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Homma T, Doki Y, Yamamoto Y, Ojima T, Shimada Y, Kitamura N, et al. Risk factors of neuropathic pain after thoracic surgery. J Thorac Dis. 2018;10(5):2898–907. https://doi.org/10.21037/jtd.2018.05.25.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Butler S, Jonzon B, Branting-Ekenbäck C, Wadell C, Farahmand B. Predictors of severe pain in a cohort of 5271 individuals with self-reported neuropathic pain. Pain. 2013;154:141–6. https://doi.org/10.1016/j.pain.2012.10.001.

    Article  PubMed  Google Scholar 

  201. Guastella V, Mick G, Soriano C, Vallet L, Escande G, Dubray C, et al. A prospective study of neuropathic pain induced by thoracotomy: incidence, clinical description, and diagnosis. Pain. 2011;152(1):74–81. https://doi.org/10.1016/j.pain.2010.09.004.

    Article  PubMed  Google Scholar 

  202. Litwin MS. Post sympathectomy neuralgia. Arch Surg. 1962;84(5):591–5. https://doi.org/10.1001/archsurg.1962.01300230107022.

    Article  Google Scholar 

  203. Antiel RM, Bos JM, Joyce DD, Owen HJ, Roskos PL, Moir C, et al. Quality of life after videoscopic left cardiac sympathetic denervation in patients with potentially life-threatening cardiac channelopathies/cardiomyopathies. Heart Rhythm. 2016;13:62–9. https://doi.org/10.1016/j.hrthm.2015.09.001.

    Article  PubMed  Google Scholar 

  204. Schwartz PJ, De Ferrari GM, Pugliese L. Cardiac sympathetic denervation 100 years later: Jonnesco would have never believed it. Int J Cardiol. 2017;237:25–8. https://doi.org/10.1016/j.ijcard.2017.03.020.

    Article  PubMed  Google Scholar 

  205. Dusi V, Pugliese L, Castelletti S, Dagradi F, Crotti L, Mori A, et al. Cardiac sympathetic denervation: evolving technique, expanding indications. Eur Heart J. 2018;39(Suppl):4748.

    Google Scholar 

  206. Keegan JJ, Garrett FD. The segmental distribution of the cutaneous nerves in the limbs of man. Anat Rec. 1948;102:409–37.

    Article  CAS  PubMed  Google Scholar 

  207. O’Halloran KD, Perl ER. Effects of partial nerve injury on the responses of C-fiber polymodal nociceptors to adrenergic agonists. Brain Res. 1997;759:233–40.

    Article  PubMed  Google Scholar 

  208. Sato J, Perl ER. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science. 1991;251:1608–10.

    Article  CAS  PubMed  Google Scholar 

  209. Bossut DF, Perl ER. Effects of nerve injury on sympathetic excitation of a delta mechanical nociceptors. J Neurophysiol. 1995;73:1721–3.

    Article  CAS  PubMed  Google Scholar 

  210. Bossut DF, Shea V, Perl ER. Sympathectomy induces adrenergic excitability of cutaneous C-fiber nociceptors. J Neurophysiol. 1996;75:514–7. https://doi.org/10.1152/jn.1996.75.1.514.

    Article  CAS  PubMed  Google Scholar 

  211. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) investigators. Lancet. 1998;351:478–84. https://doi.org/10.1016/S0140-6736(97)11144-8.

    Article  PubMed  Google Scholar 

  212. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23. https://doi.org/10.1056/NEJM198409273111303.

    Article  CAS  PubMed  Google Scholar 

  213. Schwartz PJ, Motolese M, Pollavini G, Lotto A, Ruberti U, Trazzi R, et al. Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions. J Cardiovasc Electrophysiol. 1992;3:2–6.

    Article  Google Scholar 

  214. Dusi V, De Ferrari GM, Pugliese L, Schwartz PJ. Cardiac Sympathetic Denervation in Channelopathies. Front Cardiovasc Med. 2019;26;6:27. https://doi.org/10.3389/fcvm.2019.00027.

  215. Dusi V, Sorg JM, Gornbein J, Gima J, Yanagawa J, Lee JM, et al. Prognostic impact of atrial rhythm and dimension in patients with structural heart disease undergoing cardiac sympathetic denervation for ventricular arrhythmias. Heart Rhythm 2019. https://doi.org/10.1016/j.hrthm.2019.12.007

  216. Kaski JC. Pathophysiology and management of patients with chest pain and normal coronary arteriograms (Cardiac Syndrome X). Circulation. 2004;109:568-72. https://doi.org/10.1161/01.CIR.0000116601.58103.62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Dusi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dusi, V. (2020). Nociception, Sympathetic Nervous System, and Inflammation. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics