Skip to main content

Analgesic Drugs and Cardiac Safety

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

Acute pain may become very dangerous for the cardiac function. Its rapid and efficacious treatment is important to prevent serious cardiac complications, especially in patients with pre-existing cardiovascular problems. At the same time, the use of analgesics may become harmful for the cardiovascular system. In fact, all the drugs used for treating pain have effects on heart and vascular system.

In this chapter, the authors deeply analyze the quality and quantity of the side effects of analgesics on heart’s safety. They start reminding that opioid receptors are present in every part of the cardiovascular system and may have a deep influence on its function. Such receptors have effects on the parasympathetic system, but also on the inotropic and chronotropic heart activities. They affect the heart electrophysiology and may be responsible for arrhythmias. At the same time, they may protect the heart activity, as it is the case with the well-known efficacy of morphine administration to treat coronary syndromes. Lastly, the authors report data on potential cardio-protective effects of opioids “conditioning” myocardial responses both in physiological conditions and during post-ischemic phase.

Large part of the chapter is dedicated to the effects of NSAIDs on cardiovascular functions. The authors start reminding the different actions of cyclooxygenases (COX1 and COX2) on the cardiovascular system. Then, they make clear that not all the NSAIDs affect such functions in an equal entity. Lastly, they deeply analyze the effects of both NSAIDs and Coxibs on ischemic cardiovascular risk, on heart failure, on stroke, and on renal function and arterial hypertension. At the end, they present a list of questions still open for scientific discussion, and conclude that, from the cardiovascular perspective, there are no “safe” NSAIDs, and the best solution is always to use such drugs in a wise way, at their minimal efficacious dosage, for the shortest time necessary.

The chapter is closed with the presentation of the cardiovascular effects of paracetamol and adjuvant drugs. In particular, authors report the effects of antidepressants, gabapentinoids and few other adjuvant drugs frequently used in pain patients.

They conclude reminding the readers that pain management is always difficult and very challenging for the clinicians. A deep knowledge of the drugs used as analgesics, both for the effects on pain and for their side effects, is absolutely crucial if the physicians want to help more than to harm the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Varrassi G, Fusco M, Coaccioli S, Paladini A. Chronic pain and neurodegenerative process in elderly people. Pain Pract. 2015;15:1–3. https://doi.org/10.1111/papr.12254.

    Article  PubMed  Google Scholar 

  2. Fusco M, Skaper S, Coaccioli S, Paladini A, Varrassi G. Degenerative joint diseases and neuroinflammation. Pain Pract. 2017;17:522–32. https://doi.org/10.1111/papr.12551.

    Article  PubMed  Google Scholar 

  3. Liu S, Carpenter RL, Neal JM. Epidural anesthesia and analgesia. Their role in postoperative outcome. Anesthesiology. 1995;82:1474–506.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenfeld BA, Beattie C, Christopherson R. The effects of different anesthetic regimens on fibrinolysis and the development of postoperative arterial thrombosis. PIRAJ Study Group. Anesthesiology. 1993;79:435–43.

    Article  CAS  PubMed  Google Scholar 

  5. Steele SM, Slaughter TF, Greenberg CS. Epidural anesthesia and analgesia: implications for perioperative coagulability. Anesth Analg. 1991;73:683–5.

    Article  CAS  PubMed  Google Scholar 

  6. Stevens RA, Beardsley D, White JL. Does the choice of local anesthetic affect the catecholamine response to stress during epidural anesthesia? Anesthesiology. 1995;81:1169–74.

    Google Scholar 

  7. Meissner A, Rolf N, VanAken H. Thoracic epidural anesthesia and the patient with heart disease: benefits, risks and controversies. Anesth Analg. 1997;85:517–28.

    Article  CAS  PubMed  Google Scholar 

  8. Nabel EG, Ganz P, Gordon JB. Dilation of normal and constriction of artherosclerotic coronary arteries caused by the cold pressor test. Circulation. 1988;77:43–52.

    Article  CAS  PubMed  Google Scholar 

  9. Beattie WS, Buckley DN, Forrest JB. Epidural morphine reduces the risk of postoperative myocardial ischemia in patients with cardiac risk factors. Can J Anaesth. 1993;40:532–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bruehl S, Chung OY. Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev. 2004;28:395–414.

    Article  PubMed  Google Scholar 

  11. Shawaqfeh MS, Harrington C. Pain: systematic review of pharmacy compounding of pain medication. Int J Pharm Compd. 2018;22(1):19–24.

    PubMed  Google Scholar 

  12. Klivinyi C, Bornemann-Cimenti H. Pain medication and long QT syndrome. Korean J Pain. 2018;31(1):3–9. https://doi.org/10.3344/kjp.2018.31.1.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khademi H, Kamangar F, Brennan P, Malekzadeh R. Opioid therapy and its side effects: a review. Arch Iran Med. 2016;19(12):870–6. 0161912/AIM.0010.

    PubMed  Google Scholar 

  14. Treskatsch S, Shaqura M, Dehe L, Roepke TK, Shakibaei M, Schäfer M, Mousa SA. Evidence for MOR on cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular myocardium in rats. Heart Vessel. 2016;31(8):1380–8. https://doi.org/10.1007/s00380-015-0784-8.

    Article  Google Scholar 

  15. Headrick JP, See Hoe LE, Du Toit EF, Peart JN. Opioid receptors and cardioprotection – ‘opioidergic conditioning’ of the heart. Br J Pharmacol. 2015;172(8):2026–50. https://doi.org/10.1111/bph.13042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romano MA, Seymour EM, Berry JA, McNish RA, Bolling SF. Relative contribution of endogenous opioids to myocardial ischemic tolerance. J Surg Res. 2004;118:32–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Guo H, Yuan F, Hong ZC, Tian YM, Zhang XJ, Zhang Y. Limb remote ischemia per-conditioning protects the heart against ischemia-reperfusion injury through the opioid system in rats. Can J Physiol Pharmacol. 2018;96(1):68–75. https://doi.org/10.1139/cjpp-2016-0585.

    Article  CAS  PubMed  Google Scholar 

  18. Jang Y, Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z. Postconditioning prevents reperfusion injury by activating delta-opioid receptors. Anesthesiology. 2008;108:243–50.

    Article  CAS  PubMed  Google Scholar 

  19. Yin W, Zhang P, Huang JH, Zhang QY, Fan R, Li J, Zhou JJ, Hu YZ, Guo HT, Zhang SM, Wang YM, Kaye AD, Gu CH, Liu JC, Cheng L, Cui Q, Yi DH, Pei JM. Stimulation of kappa-opioid receptor reduces isoprenaline-induced cardiac hypertrophy and fibrosis. Eur J Pharmacol. 2009;607(1–3):135–42. https://doi.org/10.1016/j.ejphar.2009.01.050.

    Article  CAS  PubMed  Google Scholar 

  20. Dickson EW, Hogrefe CP, Ludwig PS, Ackermann LW, Stoll LL, Denning GM. Exercise enhances myocardial ischemic tolerance via an opioid receptor-dependent mechanism. Am J Physiol Heart Circ Physiol. 2008;294:H402–8.

    Article  CAS  PubMed  Google Scholar 

  21. Galvão TF, Matos KC, Brum PC, Negrão CE, Luz PL, Chagas AC. Cardioprotection conferred by exercise training is blunted by blockade of the opioid system. Clinics (Sao Paulo). 2011;66:151–7.

    Article  Google Scholar 

  22. Barron BA. Cardiac opioids. Proc Soc Exp Biol Med. 2000;224:1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Younès A, Pepe S, Barron BA, Spurgeon HA, Lakatta EG, Caffrey JL. Cardiac synthesis, processing, and coronary release of enkephalin-related peptides. Am J Physiol Heart Circ Physiol. 2000;279:H1989–98.

    Article  PubMed  Google Scholar 

  24. Varrassi G, Bazzano C, Edwards WT. Effects of physical activity on maternal plasma β-endorphin levels and perception of labor pain. Am J Obstet Gynecol. 1989;160(3):707–12. https://doi.org/10.1016/S0002-9378(89)80065-1.

    Article  CAS  PubMed  Google Scholar 

  25. Falcone C, Guasti L, Ochan M, Codega S, Tortorici M, Angoli L, Bergamaschi R, Montemartini C. Beta-endorphins during coronary angioplasty in patients with silent or symptomatic myocardial ischemia. J Am Coll Cardiol. 1993;22(6):1614–20.

    Article  CAS  PubMed  Google Scholar 

  26. Zatta AJ, Kin H, Yoshishige D, Jiang R, Wang N, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Caffrey JL, Vinten-Johansen J. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol. 2008;294(3):H1444–51. https://doi.org/10.1152/ajpheart.01279.2006.

    Article  CAS  PubMed  Google Scholar 

  27. Pepe S, van den Brink OW, Lakatta EG, Xiao RP. Cross-talk of opioid peptide receptor and beta-adrenergic receptor signaling in the heart. Cardiovasc Res. 2004;63:414–22.

    Article  CAS  PubMed  Google Scholar 

  28. Younès A, Pepe S, Yoshishige D, Caffrey JL, Lakatta EG. Ischemic preconditioning increases the bioavailability of cardiac enkephalins. Am J Phys. 2005;289:H1652–61.

    Google Scholar 

  29. Farias M, Jackson K, Yoshishige D, Caffrey JL. Bimodal δ-opioid receptors regulate vagal bradycardia in canine sinoatrial node. Am J Phys. 2003;285:H1332–9.

    CAS  Google Scholar 

  30. Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase b inhibition during reperfusion in intact rat hearts. Circ Res. 2004;94:960–6.

    Article  CAS  PubMed  Google Scholar 

  31. Jackson KE, Farias M, Stanfill AS, Caffrey JL. Transient arterial occlusion raises enkephalin in the canine sinoatrial node and improves vagal bradycardia. Auton Neurosci. 2001;94:84–92.

    Article  CAS  PubMed  Google Scholar 

  32. Headrick JP, Pepe S, Peart JN. Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Des. 2012;18(37):6090–100.

    Article  CAS  PubMed  Google Scholar 

  33. Caffrey JL, Mateo Z, Napier LD, Gaugl JF, Barron BA. Intrinsic cardiac enkephalins inhibit vagal bradycardia in the dog. Am J Phys. 1995;268:H848–55.

    CAS  Google Scholar 

  34. Caffrey JL. Enkephalin inhibits vagal control of heart rate, contractile force and coronary blood flow in the canine heart in vivo. J Auton Nerv Syst. 1999;76:75–82.

    Article  CAS  PubMed  Google Scholar 

  35. Hayashi K, Tanaka A. Effect-site concentrations of remifentanil causing bradycardia in hypnotic and non-hypnotic patients. J Clin Monit Comput. 2016;30(6):919–24.

    Article  PubMed  Google Scholar 

  36. Hanouz JL, Yvon A, Guesne G, Eustratiades C, Babatasi G, Rouet R, Ducouret P, Khayat A, Bricard H, Gérard JL. The in vitro effects of remifentanil, sufentanil, fentanyl, and alfentanil on isolated human right atria. Anesth Analg. 2001;93(3):543–9.

    Article  CAS  PubMed  Google Scholar 

  37. Wu C, Fry CH, Henry J. The mode of action of several opioids on cardiac muscle. Exp Physiol. 1997;82:261–72.

    Article  CAS  PubMed  Google Scholar 

  38. Huang MH, Nguyen V, Wu Y, Rastogi S, Lui CY, Birnbaum Y, Wang HQ, Ware DL, Chauhan M, Garg N, Poh KK, Ye L, Omar AR, Tan HC, Uretsky BF, Fujise K. Reducing ischaemia/reperfusion injury through delta-opioid-regulated intrinsic cardiac adrenergic cells: adrenopeptidergic co-signaling. Cardiovasc Res. 2009;84(3):452–60. https://doi.org/10.1093/cvr/cvp233.

    Article  CAS  PubMed  Google Scholar 

  39. Maslov LN, Barzakh EI, Platonov AA, Minin SM, Ovchinnikov MV. Chronotropic effect of D-Ala2,Leu5,Arg6-enkephalin (dalargin) is associated with activation of peripheral kappa-opioid receptors. Bull Exp Biol Med. 2005;140:682–6.

    Article  CAS  PubMed  Google Scholar 

  40. Katchman AN, Koerner J, Tosaka T, Woosley RL, Ebert SN. Comparative evaluation of HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs. J Pharmacol Exp Ther. 2006;316:1098–106.

    Article  CAS  PubMed  Google Scholar 

  41. Westermeyer J, Adabag S, Anand V, Thuras P, Yoon G, Batres-Y-Carr T. Methadone maintenance dose/weight ratio, long QTc, and EKG screening. Am J Addict. 2016;25(6):499–507. https://doi.org/10.1111/ajad.12423.

    Article  PubMed  Google Scholar 

  42. Krantz MJ, Lewkowiez L, Hays H, Woodroffe MA, Robertson AD, Mehler PS. Torsade de pointes associated with very-high-dose methadone. Ann Intern Med. 2002;137:501–4.

    Article  CAS  PubMed  Google Scholar 

  43. Anghelescu DL, Patel RM, Mahoney DP, Trujillo L, Faughnan LG, Steen BD, Baker JN, Pei D. Methadone prolongs cardiac conduction in young patients with cancer-related pain. J Opioid Manag. 2016;12(2):131–8. https://doi.org/10.5055/jom.2016.0325.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Keller GA, Villa Etchegoyen MC, Fernández N, Olivera NM, Quiroga PN, Diez RA, Di Girolamo G. Meperidine-induced QTc-interval prolongation: prevalence, risk factors, and correlation to plasma drug and metabolite concentrations. Int J Clin Pharmacol Ther. 2017;55(3):275–85. https://doi.org/10.5414/CP202612.

    Article  PubMed  Google Scholar 

  45. DeSilva RA, Vemer RL, Lown B. Protective effect of the vagotonic action of morphine sulphate on ventricular vulnerability. Cardiovasc Res. 1978;12:167–72.

    Article  CAS  Google Scholar 

  46. Laubie M, Schmitt H, Canellas I, Roquebert J, Demichel P. Centrally mediated bradycardia and hypotension induced by narcotic analgesics: dextromoramide and fentanyl. Eur J Pharmacol. 1974;28:66–75.

    Article  CAS  PubMed  Google Scholar 

  47. Laubie M, Schmitt H, Drouillat M. Central sites and mechanisms of the hypotensive and bradycardic effects of the narcotic analgesic agent fentanyl. Naunyn Schmiedeberg’s Arch Pharmacol. 1977;296:255–61.

    Article  CAS  Google Scholar 

  48. Eggleston W, Marraffa JM, Stork CM, Mercurio-Zappala M, Su MK, Wightman RS, Cummings KR, Schier JG. Notes from the field: cardiac dysrhythmias after loperamide abuse – New York, 2008–2016. MMWR Morb Mortal Wkly Rep. 2016;65(45):1276–7. https://doi.org/10.15585/mmwr.mm6545a7.

    Article  PubMed  Google Scholar 

  49. Vaughn P, Solik MM, Bagga S, Padanilam BJ. Electrocardiographic abnormalities, malignant ventricular arrhythmias, and cardiomyopathy associated with loperamide abuse. J Cardiovasc Electrophysiol. 2016;27(10):1230–3. https://doi.org/10.1111/jce.13052.

    Article  PubMed  Google Scholar 

  50. Eggleston W, Clark KH, Marraffa JM. Loperamide abuse associated with cardiac dysrhythmia and death. Ann Emerg Med. 2017;69(1):83–6. https://doi.org/10.1016/j.annemergmed.2016.03.047.

    Article  PubMed  Google Scholar 

  51. Sessler NE, Walker E, Chickballapur H, Kacholakalayil J, Coplan PM. Disproportionality analysis of buprenorphine transdermal system and cardiac arrhythmia using FDA and WHO postmarketing reporting system data. Postgrad Med. 2017;129(1):62–8. https://doi.org/10.1080/00325481.2016.1271698.

    Article  PubMed  Google Scholar 

  52. Cataldo M. Arrhythmia associated with buprenorphine and methadone reported to the Food and Drug Administration. Addiction. 2016;111(9):1685–6. https://doi.org/10.1111/add.13411.

    Article  PubMed  Google Scholar 

  53. Cole JB, Stellpflug SJ, Smith SW. Refractory hypotension and “ventricular fibrillation” with large U waves after overdose. JAMA Intern Med. 2016;176(7):1007–9. https://doi.org/10.1001/jamainternmed.2016.2065.

    Article  PubMed  Google Scholar 

  54. Gursoy S, Bagcivan I, Yildirim MK, Berkan O, Kaya T. Vasorelaxant effect of opioid analgesics on the isolated human radial artery. Eur J Anaesthesiol. 2006;23:496–500.

    Article  CAS  PubMed  Google Scholar 

  55. Ruan X, Chiravuri S, Kaye AD. The narrative review on morphine in acute coronary syndrome: recognizing opioidergic cardioprotection. Am Heart J. 2016;180:e5–6. https://doi.org/10.1016/j.ahj.2016.07.008.

    Article  PubMed  Google Scholar 

  56. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116:674–99. https://doi.org/10.1161/CIRCRESEAHA.116.305348.

    Article  CAS  PubMed  Google Scholar 

  57. Kharbanda RK. Cardiac conditioning: a review of evolving strategies to reduce ischaemia-reperfusion injury. Heart. 2010;96:1179–86.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    Article  CAS  PubMed  Google Scholar 

  59. Yang XC, Liu Y, Wang LF, Cui L, Wang T, Ge YG, Wang HS, Li WM, Xu L, Ni ZH, Liu SH, Zhang L, Jia HM, Vinten-Johansen J, Zhao ZQ. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol. 2007;19(10):424–30.

    PubMed  Google Scholar 

  60. Wong GT, Li R, Jiang LL, Irwin MG. Remifentanil postconditioning attenuates cardiac ischemia-reperfusion injury via kappa or delta opioid receptor activation. Acta Anaesthesiol Scand. 2010;54:510–8.

    Article  CAS  PubMed  Google Scholar 

  61. Guo HT, Zhang RH, Zhang Y, Zhang LJ, Li J, Shi QX, Wang YM, Fan R, Bi H, Yin W, Pei JM. Endogenous κ-opioid peptide mediates the cardioprotection induced by ischemic postconditioning. J Cardiovasc Pharmacol. 2011;58(2):207–15. https://doi.org/10.1097/FJC.0b013e318220e37f.

    Article  CAS  PubMed  Google Scholar 

  62. Gross ER, Hsu AK, Gross GJ. Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion. Anesth Analg. 2009;109:1395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tong G, Sun Z, Wei X, Gu C, Kaye AD, Wang Y, Li J, Zhang Q, Guo H, Yu S, Yi D, Pei J. U50,488H postconditioning reduces apoptosis after myocardial ischemia and reperfusion. Life Sci. 2011;88(1–2):31–8. https://doi.org/10.1016/j.lfs.2010.10.018.

    Article  CAS  PubMed  Google Scholar 

  64. Patel HH, Moore J, Hsu AK, Gross GJ. Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol. 2002;34:1317–23.

    Article  CAS  PubMed  Google Scholar 

  65. Yao L, Wong GT, Xia Z, Irwin MG. Interaction between spinal opioid and adenosine receptors in remote cardiac preconditioning: effect of intrathecal morphine. J Cardiothorac Vasc Anesth. 2011;25:444–8.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Y, Irwin MG, Lu Y, Mei B, Zuo YM, Chen ZW, Wong TM. Intracerebroventricular administration of morphine confers remote cardioprotection – role of opioid receptors and calmodulin. Eur J Pharmacol. 2011;656(1–3):74–80. https://doi.org/10.1016/j.ejphar.2011.01.027.

    Article  CAS  PubMed  Google Scholar 

  67. Rentoukas I, Giannopoulos G, Kaoukis A, Kossyvakis C, Raisakis K, Driva M, Panagopoulou V, Tsarouchas K, Vavetsi S, Pyrgakis V, Deftereos S. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention: enhancement by opioid action. JACC Cardiovasc Interv. 2010;3(1):49–55. https://doi.org/10.1016/j.jcin.2009.10.015.

    Article  PubMed  Google Scholar 

  68. Chen A, Ashburn MA. Cardiac effects of opioid therapy. Pain Med. 2015;16:S27–31. https://doi.org/10.1111/pme.12915.

    Article  PubMed  Google Scholar 

  69. Bolte C, Newman G, Schultz Jel J. Kappa and delta opioid receptor signaling is augmented in the failing heart. J Mol Cell Cardiol. 2009;47:493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siong Chan DC, Cao TH, Ng LL. Proenkephalin in heart failure. Heart Fail Clin. 2018;14(1):1–11. https://doi.org/10.1016/j.hfc.2017.08.001.

    Article  PubMed  Google Scholar 

  71. He SF, Jin SY, Yang W, Pan YL, Huang J, Zhang SJ, Zhang L, Zhang Y. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br J Anaesth. 2018;121(1):26–37. https://doi.org/10.1016/j.bja.2017.11.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Iterson EH, Johnson BD, Joyner MJ, Curry TB, Olson TP. \( \dot{\mathrm{V}}{\mathrm{o}}_2 \) kinetics associated with moderate-intensity exercise in heart failure: impact of intrathecal fentanyl inhibition of group III/IV locomotor muscle afferents. Am J Physiol Heart Circ Physiol. 2017;313(1):H114–24. https://doi.org/10.1152/ajpheart.00014.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ebrahimi F, Tavakoli S, Hajrasouliha AR, Sadeghipour H, Dehghani M, Ahmadi SH, Dehpour AR. Involvement of endogenous opioid peptides and nitric oxide in the blunted chronotropic and inotropic responses to beta-adrenergic stimulation in cirrhotic rats. Fundam Clin Pharmacol. 2006;20(5):461–71.

    Article  CAS  PubMed  Google Scholar 

  74. Gaskari SA, Mani AR, Ejtemaei-Mehr S, Namiranian K, Homayoun H, Ahmadi H, Dehpour AR. Do endogenous opioids contribute to the bradycardia of rats with obstructive cholestasis? Fundam Clin Pharmacol. 2002;16(4):273–9.

    Article  CAS  PubMed  Google Scholar 

  75. Wong SC, Ingenito AJ. Possible opioid receptor function changes in isolated atria of the spontaneously hypertensive rat. Gen Pharmacol. 1993;24:1483–90.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou Y, Wang Y, Wang X, Tian X, Zhang S, Yang F, Guo H, Fan R, Feng N, Jia M, Gu X, Wang Y, Li J, Pei J. The protective effects of Κ-opioid receptor stimulation in hypoxic pulmonary hypertension involve inhibition of autophagy through the AMPK-MTOR pathway. Cell Physiol Biochem. 2017;44(5):1965–79. https://doi.org/10.1159/000485886.

    Article  CAS  PubMed  Google Scholar 

  77. Rawal H, Patel BM. Opioids in cardiovascular disease: therapeutic options. J Cardiovasc Pharmacol Ther. 2018;23(4):279–91. https://doi.org/10.1177/1074248418757009.

    Article  CAS  PubMed  Google Scholar 

  78. Strawson J. Nonsteroidal anti-inflammatory drugs and cancer pain. Curr Opin Support Palliat Care. 2018; https://doi.org/10.1097/SPC.0000000000000332.

  79. Shah K, Gupta JK, Chauhan NS, Upmanyu N, Shrivastava SK, Mishra P. Prodrugs of NSAIDs: a review. Open Med Chem J. 2017;11:146–95. https://doi.org/10.2174/1874104501711010146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rasmussen S. NSAIDs are superior to paracetamol for osteoarthritic pain and function in a network meta-analysis. BMJ Evid Based Med. 2018;23(1):40–1. https://doi.org/10.1136/ebmed-2017-110878.

    Article  PubMed  Google Scholar 

  81. Aranda JV, Salomone F, Valencia GB, Beharry KD. Non-steroidal anti-inflammatory drugs in newborns and infants. Pediatr Clin N Am. 2017;64(6):1327–40. https://doi.org/10.1016/j.pcl.2017.08.009.

    Article  Google Scholar 

  82. Desborough MJR, Keeling DM. The aspirin story – from willow to wonder drug. Br J Haematol. 2017;177(5):674–83. https://doi.org/10.1111/bjh.14520.

    Article  PubMed  Google Scholar 

  83. Vane JR, Warner TD. Nomenclature for COX-2 inhibitors. Lancet. 2000;356(9239):1373–4.

    Article  CAS  PubMed  Google Scholar 

  84. Howard PA, Delafontaine P. Nonsteroidal anti-inflammatory drugs and cardiovascular risk. J Am Coll Cardiol. 2004;43(4):519–25.

    Article  CAS  PubMed  Google Scholar 

  85. Warner TD, Mitchell JA. Cyclooxygenase: new forms, new inhibitors, and lesson from the clinic. FASEB J. 2004;18:790–804.

    Article  CAS  PubMed  Google Scholar 

  86. Ferreira SH, Moncada S, Vane JR. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat New Biol. 1971;231(25):237–9.

    Article  CAS  PubMed  Google Scholar 

  87. Smith JB, Willis AL. Aspirin selectively inhibits prostaglandin production in human platelets. Nat New Biol. 1971;231(25):235–7.

    Article  CAS  PubMed  Google Scholar 

  88. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–5.

    Article  CAS  PubMed  Google Scholar 

  89. Rosen GD, Birkenmeier TM, Raz A, Holtzman MJ. Identification of a cyclooxygenase-related gene and its potential role in prostaglandin formation. Biochem Biophys Res Commun. 1989;164(3):1358–65.

    Article  CAS  PubMed  Google Scholar 

  90. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063–73.

    Article  CAS  PubMed  Google Scholar 

  91. Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 1991;266(20):12866–72.

    CAS  PubMed  Google Scholar 

  92. O’Banion MK, Winn VD, Young DA. cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci U S A. 1992;89(11):4888–92.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991;88(7):2692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A. 1992;89(16):7384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Masferrer JL, Seibert K, Zweifel B, Needleman P. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci U S A. 1992;89(9):3917–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A. 1993;90(24):11693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120.

    Article  CAS  PubMed  Google Scholar 

  98. Catella-Lawson F, McAdam B, Morrison BW, Kapoor S, Kujubu D, Antes L, Lasseter KC, Quan H, Gertz BJ, FitzGerald GA. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther. 1999;289(2):735–41.

    CAS  PubMed  Google Scholar 

  99. FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med. 2001;345(6):433–42.

    Article  CAS  PubMed  Google Scholar 

  100. Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov. 2003;2(3):179–91.

    Article  CAS  PubMed  Google Scholar 

  101. McAdam BF, Catella-Lawson F, Mardini IA, Kapoor S, Lawson JA, FitzGerald GA. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci U S A. 1999;96(1):272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mitchell JA, Evans TW. Cyclooxygenase-2 as a therapeutic target. Inflamm Res. 1998;47(Suppl 2):S88–92.

    Article  CAS  PubMed  Google Scholar 

  103. Hara S. Prostaglandin terminal synthases as novel therapeutic targets. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(9):703–23. https://doi.org/10.2183/pjab.93.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Scarpignato C, Hunt RH. Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin N Am. 2010;39:433–64. https://doi.org/10.1016/j.gtc.2010.08.010.

    Article  Google Scholar 

  105. Shin SJ, Noh CK, Lim SG, Lee KM, Lee KJ. Non-steroidal anti-inflammatory drug-induced enteropathy. Intest Res. 2017;15(4):446–55. https://doi.org/10.5217/ir.2017.15.4.446.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Aboul-Hassan SS, Stankowski T, Marczak J, Peksa M, Nawotka M, Stanislawski R, Kryszkowski B, Cichon R. The use of preoperative aspirin in cardiac surgery: a systematic review and meta-analysis. J Card Surg. 2017;32(12):758–774. https://doi.org/10.1111/jocs.13250. Epub 2017 Dec 3.

  107. Rodriguez LA. The effect of NSAIDs on the risk of coronary heart disease: fusion of clinical pharmacology and pharmacoepidemiologic data. Clin Exp Rheumatol. 2001;19(Suppl 25):S41–4.

    Google Scholar 

  108. Belton O, Byrne D, Kearney D, Leahy A, FitzGerald DJ. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis. Circulation. 2000;102(8):840–5.

    Article  CAS  PubMed  Google Scholar 

  109. Censarek P, Freidel K, Udelhoven M, Ku SJ, Hohlfeld T, Meyer-Kirchrath J, Schrör K, Weber AA. Cyclooxygenase COX-2a, a novel COX-2 mRNA variant, in platelets from patients after coronary artery bypass grafting. Thromb Haemost. 2004;92(5):925–8.

    Article  CAS  PubMed  Google Scholar 

  110. Bishop-Bailey D, Pepper JR, Larkin SW, Mitchell JA. Differential induction of cyclooxygenase-2 in human arterial and venous smooth muscle: role of endogenous prostanoids. Arterioscler Thromb Vasc Biol. 1998;18(10):1655–61.

    Article  CAS  PubMed  Google Scholar 

  111. Jimenez R, Belcher E, Sriskandan S, Lucas R, McMaster S, Vojnovic I, Warner TD, Mitchell JA. Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle. Proc Natl Acad Sci U S A. 2005;102(12):4637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Inoue H, Taba Y, Miwa Y, Yokota C, Miyagi M, Sasaguri T. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22(9):1415–20.

    Article  CAS  PubMed  Google Scholar 

  113. Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975;72:2994–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263(5579):663–5.

    Article  CAS  PubMed  Google Scholar 

  115. Patrono C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br J Clin Pharmacol. 2016;82(4):957–64. https://doi.org/10.1111/bcp.13048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Patrono C. Aspirin: new cardiovascular uses for an old drug. Am J Med. 2001;110(1A):62S–5S.

    Article  CAS  PubMed  Google Scholar 

  117. Roth GJ, Machuga ET, Ozols J. Isolation and covalent structure of the aspirin-modified, active-site region of prostaglandin synthetase. Biochemistry. 1983;22:4672–5.

    Article  CAS  PubMed  Google Scholar 

  118. Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984;311(19):1206–11.

    Article  CAS  PubMed  Google Scholar 

  119. Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154(3):500–514. https://doi.org/10.1053/j.gastro.2017.10.049. Epub 2017 Dec 6.

  120. Cata JP, Guerra CE, Chang GJ, Gottumukkala V, Joshi GP. Non-steroidal anti-inflammatory drugs in the oncological surgical population: beneficial or harmful? A systematic review of the literature. Br J Anaesth. 2017;119(4):750–64. https://doi.org/10.1093/bja/aex225.

    Article  CAS  PubMed  Google Scholar 

  121. Schug SA, Parsons B, Li C, Xia F. The safety profile of parecoxib for the treatment of postoperative pain: a pooled analysis of 28 randomized, double-blind, placebo-controlled clinical trials and a review of over 10 years of postauthorization data. J Pain Res. 2017;10:2451–9. https://doi.org/10.2147/JPR.S136052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Alexanian A, Sorokin A. Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genomics. 2017;49(11):667–81. https://doi.org/10.1152/physiolgenomics.00086.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ, VIGOR Study Group. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med. 2000;343(21):1520–8.

    Article  CAS  PubMed  Google Scholar 

  124. Thomas D, Ali Z, Zachariah S, Sundararaj KGS, Van Cuyk M, Cooper JC. Coxibs refocus attention on the cardiovascular risks of non-aspirin NSAIDs. Am J Cardiovasc Drugs. 2017;17(5):343–6. https://doi.org/10.1007/s40256-017-0223-6.

    Article  CAS  PubMed  Google Scholar 

  125. Watson DJ, Rhodes T, Guess HA. All-cause mortality and vascular events among patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK general practice research database. J Rheumatol. 2003;30(6):1196–202.

    PubMed  Google Scholar 

  126. Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burr AM, Zhao WW, Kent JD, Lefkowith JB, Verburg KM, Geis GS. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA. 2000;284(10):1247–55.

    Article  CAS  PubMed  Google Scholar 

  127. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M, Adenoma Prevention with Celecoxib (APC) Study Investigators. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352(11):1071–80.

    Article  CAS  PubMed  Google Scholar 

  128. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA, Adenomatous Polyp Prevention on Vioxx (APPROVe) Trial Investigators. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352(11):1092–102.

    Article  CAS  PubMed  Google Scholar 

  129. Veettil SK, Lim KG, Ching SM, Saokaew S, Phisalprapa P, Chaiyakunapruk N. Effects of aspirin and non-aspirin nonsteroidal anti-inflammatory drugs on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized clinical trials. BMC Cancer. 2017;17(1):763. https://doi.org/10.1186/s12885-017-3757-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Breitner J, Baker L, Drye L, Evans D, Lyketsos C, Ryan L, Zandi P, Baker L, Breitner J, Saucedo HH, Anau J, Cholerton B, Kramer K, Bloomberg JH, Zandi P, Drye L, Shanklin Casper A, Meinert C, Martin B, Jenkins G, McCaffrey L, Meinert J, Vaidya V, Ahuja A, May P, Ryan L, Lyketsos CG, Steinberg M, Brandt J, Pedroso JJ, Bergey A, Gogel C, Smith L, Kraus J, Stern RA, Green RC, Gavett B, Mwicigi J, Baldwin L, McGowan T, Johnson P, Qiu W, Frederick J, Raghavan S, Rossi C, Mandell A, Dinizo D, Roth T, Porsteinsson A, Ismail M, Brand C, Richard J, Stear K, Schepp S, Cosman K, Martin K, Craft S, Baker L, Dahl D, Garrett G, Tidwell J, Thielke S, Smith L, Arbuckle M, Strong W, Ladenberg J, Callaghan M, Watson S, Skinner J, Bowton K, Sabbagh M, Belden C, Liebsack C, Davis K, Arnieri L, Malek-Ahmadi M, Nicholson L, Jacobson S, Schwartz E, Mullan M, Luis C, Parrish J, Faircloth M, Ervin T, Girard J, Burke D, Keegan A, Evans D. Results of a follow-up study to the randomized Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Alzheimers Dement. 2013;9(6):714–23. https://doi.org/10.1016/j.jalz.2012.11.012.

    Article  Google Scholar 

  131. Hippisley-Cox J, Coupland C. Risk of myocardial infarction in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis. BMJ. 2005;330(7504):1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Horgas AL. Pain management in older adults. Nurs Clin North Am. 2017;52(4):e1–7. https://doi.org/10.1016/j.cnur.2017.08.001.

    Article  PubMed  Google Scholar 

  133. Graham DJ, Campen D, Hui R, Spence M, Cheetham C, Levy G, Shoor S, Ray WA. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective nonsteroidal anti-inflammatory drugs: nested case–control study. Lancet. 2005;365:475–81.

    Article  CAS  PubMed  Google Scholar 

  134. Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomized trials. BMJ. 2006;332(7553):1302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bally M, Nadeau L, Brophy JM. Studying additive interaction in a healthcare database: case study of NSAIDs, cardiovascular profiles, and acute myocardial infarction. PLoS One. 2018;13(8):e0201884. https://doi.org/10.1371/journal.pone.0201884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Quinn T. Review: real-world use of nonsteroidal antiinflammatory drugs is associated with acute myocardial infarction. Ann Intern Med. 2017;167(6):JC30. https://doi.org/10.7326/ACPJC-2017-167-6-030.

    Article  PubMed  Google Scholar 

  137. Hernandez-Diaz S, Varas-Lorenzo C, Garcia Rodriguez LA. Non-steroidal antiinflammatory drugs and the risk of acute myocardial infarction. Basic Clin Pharmacol Toxicol. 2006;98(3):266–74.

    Article  CAS  PubMed  Google Scholar 

  138. Esparza-Villalpando V, Pozos-Guillén A, Masuoka-Ito D, Gaitán-Fonseca C, Chavarría-Bolaños D. Analgesic efficacy of preoperative dexketoprofen trometamol: a systematic review and meta-analysis. Drug Dev Res. 2017; https://doi.org/10.1002/ddr.21419.

  139. Moore RA, Barden J. Systematic review of dexketoprofen in acute and chronic pain. BMC Clin Pharmacol. 2008;8:11. https://doi.org/10.1186/1472-6904-8-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Varrassi G, Hanna M, Macheras G, Montero A, Montes Perez A, Meissner W, Perrot S, Scarpignato C. Multimodal analgesia in moderate-to-severe pain: a role for a new fixed combination of dexketoprofen and tramadol. Curr Med Res Opin. 2017;33(6):1165–73. https://doi.org/10.1080/03007995.2017.1310092.

    Article  CAS  PubMed  Google Scholar 

  141. Cannon CP, Curtis SP, FitzGerald GA, Krum H, Kaur A, Bolognese JA, Reicin AS, Bombardier C, Weinblatt ME, van der Heijde D, Erdmann E, Laine L, MEDAL Steering Committee. Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomized comparison. Lancet. 2006;368(9549):1771–81.

    Article  CAS  PubMed  Google Scholar 

  142. McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA. 2006;296(13):1633–44.

    Article  CAS  PubMed  Google Scholar 

  143. Scarpignato C, Lanas A, Blandizzi C, Lems WF, Hermann M, Hunt RH, International NSAID Consensus Group. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis – an expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med. 2015;13:55. https://doi.org/10.1186/s12916-015-0285-8.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Arellano FM, Yood MU, Wentworth CE, et al. Use of cyclooxygenase 2 inhibitors (COX-2) and prescription nonsteroidal anti-inflammatory drugs (NSAIDS) in UK and USA populations. Implications for COX-2 cardiovascular profile. Pharmacoepidemiol Drug Saf. 2006;15(12):861–72.

    Article  CAS  PubMed  Google Scholar 

  145. Helin-Salmivaara A, Virtanen A, Vesalainen R, Grönroos JM, Klaukka T, Idänpään-Heikkilä JE, Huupponen R. NSAID use and the risk of hospitalization for first myocardial infarction in the general population: a nationwide case-control study from Finland. Eur Heart J. 2006;27(14):1657–63.

    Article  PubMed  Google Scholar 

  146. Bally M, Dendukuri N, Rich B, Nadeau L, Helin-Salmivaara A, Garbe E, Brophy JM. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017;357:j1909. https://doi.org/10.1136/bmj.j1909.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, Graham DY, Borer JS, Wisniewski LM, Wolski KE, Wang Q, Menon V, Ruschitzka F, Gaffney M, Beckerman B, Berger MF, Bao W, Lincoff AM, PRECISION Trial Investigators. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. NEJM. 2016;375:2519–29.

    Article  CAS  PubMed  Google Scholar 

  148. Becker MC, Wang TH, Wisniewski L, Wolski K, Libby P, Lüscher TF, Borer JS, Mascette AM, Husni ME, Solomon DH, Graham DY, Yeomans ND, Krum H, Ruschitzka F, Lincoff AM, Nissen SE, PRECISION Investigators. Rationale, design, and governance of Prospective Randomized Evaluation of Celecoxib Integrated Safety versus Ibuprofen Or Naproxen (PRECISION), a cardiovascular end point trial of nonsteroidal antiinflammatory agents in patients with arthritis. Am Heart J. 2009;157(4):606–12. https://doi.org/10.1016/j.ahj.2008.12.014.

    Article  CAS  PubMed  Google Scholar 

  149. Arfè A, Scotti L, Varas-Lorenzo C, Nicotra F, Zambon A, Kollhorst B, Schink T, Garbe E, Herings R, Straatman H, Schade R, Villa M, Lucchi S, Valkhoff V, Romio S, Thiessard F, Schuemie M, Pariente A, Sturkenboom M, Corrao G, On behalf of the Safety of Non-steroidal Anti-inflammatory Drugs (SOS) Project Consortium. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ. 2016;354:i4857. https://doi.org/10.1136/bmj.i4857.

    Article  PubMed  Google Scholar 

  150. Andersohn F, Schade R, Suissa S, Garbe E. Cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs and the risk of ischemic stroke: a nested case-control study. Stroke. 2006;37(7):1725–30.

    Article  CAS  PubMed  Google Scholar 

  151. Chen LC, Ashcroft DM. Do selective COX-2 inhibitors increase the risk of cerebrovascular events? A meta-analysis of randomized controlled trials. J Clin Pharm Ther. 2006;31(6):565–76.

    Article  CAS  PubMed  Google Scholar 

  152. MacDonald TM, Hawkey CJ, Ford I, McMurray JJV, Scheiman JM, Hallas J, Findlay E, Grobbee DE, Hobbs FDR, Ralston SH, Reid DM, Walters MR, Webster J, Ruschitzka F, Ritchie LD, Perez-Gutthann S, Connolly E, Greenlaw N, Wilson A, Wei L, Mackenzie IS. Randomized trial of switching from prescribed non-selective non-steroidal anti-inflammatory drugs to prescribed celecoxib: the Standard care vs. Celecoxib Outcome Trial (SCOT). Eur Heart J. 2017;38(23):1843–50. https://doi.org/10.1093/eurheartj/ehw387.

    Article  PubMed  Google Scholar 

  153. Caughey GE, Roughead EE, Pratt N, Killer G, Gilbert AL. Stroke risk and NSAIDs: an Australian population-based study. Med J Aust. 2011;195(9):525–9.

    Article  PubMed  Google Scholar 

  154. Tacconelli S, Bruno A, Grande R, Ballerini P, Patrignani P. Nonsteroidal anti-inflammatory drugs and cardiovascular safety – translating pharmacological data into clinical readouts. Expert Opin Drug Saf. 2017;16(7):791–807. https://doi.org/10.1080/14740338.2017.1338272.

    Article  CAS  PubMed  Google Scholar 

  155. Wang T, Zhai L, Zhang H, Zhao L, Guo Y. Picroside II inhibits the MEK-ERK1/2-COX2 signal pathway to prevent cerebral ischemic injury in rats. J Mol Neurosci. 2015;57(3):335–351. https://doi.org/10.1007/s12031-015-0623-5. Epub 2015 Aug 4.

  156. Zhang Y, Hoda MN, Zheng X, Li W, Luo P, Maddipati KR, Seki T, Ergul A, Wang MH. Combined therapy with COX-2 inhibitor and 20-HETE inhibitor reduces colon tumor growth and the adverse effects of ischemic stroke associated with COX-2 inhibition. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R693–R703. https://doi.org/10.1152/ajpregu.00422.2013. Epub 2014 Jul 2.

  157. Ungprasert P, Matteson EL, Thongprayoon C. Nonaspirin nonsteroidal anti-inflammatory drugs and risk of hemorrhagic stroke: a systematic review and meta-analysis of observational studies. Stroke. 2016;47(2):356–64. https://doi.org/10.1161/STROKEAHA.115.011678.

    Article  CAS  PubMed  Google Scholar 

  158. Cheng HF, Harris RC. Cyclooxygenases, the kidney, and hypertension. Hypertension. 2004;43(3):525–30.

    Article  CAS  PubMed  Google Scholar 

  159. Francois H, Coffman TM. Prostanoids and blood pressure: which way is up? J Clin Invest. 2004;114(6):757–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hsu CC, Wang H, Hsu YH, Chuang SY, Huang YW, Chang YK, Liu JS, Hsiung CA, Tsai HJ. Use of nonsteroidal anti-inflammatory drugs and risk of chronic kidney disease in subjects with hypertension: nationwide longitudinal cohort study. Hypertension. 2015;66(3):524–33. https://doi.org/10.1161/HYPERTENSIONAHA.114.05105.

    Article  CAS  PubMed  Google Scholar 

  161. Conlin PR, Moore TJ, Swartz SL, Barr E, Gazdick L, Fletcher C, DeLucca P, Demopoulos L. Effect of indomethacin on blood pressure lowering by captopril and losartan in hypertensive patients. Hypertension. 2000;36(3):461–5.

    Article  CAS  PubMed  Google Scholar 

  162. Hwang AY, Dave CV, Smith SM. Use of prescription medications that potentially interfere with blood pressure control in new-onset hypertension and treatment-resistant hypertension. Am J Hypertens. 2018; https://doi.org/10.1093/ajh/hpy118.

  163. Singh G, Miller JD, Huse DM, Pettitt D, D’Agostino RB, Russell MW. Consequences of increased systolic blood pressure in patients with osteoarthritis and rheumatoid arthritis. J Rheumatol. 2003;30(4):714–9.

    PubMed  Google Scholar 

  164. Dilger K, Herrlinger C, Peters J, Seyberth HW, Schweer H, Klotz U. Effects of celecoxib and diclofenac on blood pressure, renal function, and vasoactive prostanoids in young and elderly subjects. J Clin Pharmacol. 2002;42(9):985–94.

    Article  CAS  PubMed  Google Scholar 

  165. El-Gowelli HM, Ibrahim KS, El-Yazbi AF, El-Mas MM. Role of NADPHox/Rho-kinase signaling in the cyclosporine-NSAIDs interactions on blood pressure and baroreflexes in female rats. Life Sci. 2017;185:15–22. https://doi.org/10.1016/j.lfs.2017.07.019.

    Article  CAS  PubMed  Google Scholar 

  166. Martinez CS, Piagette JT, Escobar AG, Martín Á, Palacios R, Peçanha FM, Vassallo DV, Exley C, Alonso MJ, Miguel M, Salaices M, Wiggers GA. Aluminum exposure at human dietary levels promotes vascular dysfunction and increases blood pressure in rats: a concerted action of NAD(P)H oxidase and COX-2. Toxicology. 2017;390:10–21. https://doi.org/10.1016/j.tox.2017.08.004. Epub 2017 Aug 19.

  167. Swan SK, Rudy DW, Lasseter KC, Ryan CF, Buechel KL, Lambrecht LJ, Pinto MB, Dilzer SC, Obrda O, Sundblad KJ, Gumbs CP, Ebel DL, Quan H, Larson PJ, Schwartz JI, Musliner TA, Gertz BJ, Brater DC, Yao SL. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann Intern Med. 2000;133(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  168. Aw TJ, Haas SJ, Liew D, Krum H. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Arch Intern Med. 2005;165(5):490–6.

    Article  CAS  PubMed  Google Scholar 

  169. Ruschitzka F, Borer JS, Krum H, Flammer AJ, Yeomans ND, Libby P, Lüscher TF, Solomon DH, Husni ME, Graham DY, Davey DA, Wisniewski LM, Menon V, Fayyad R, Beckerman B, Iorga D, Lincoff AM, Nissen SE. Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen or Naproxen Ambulatory Blood Pressure Measurement) Trial. Eur Heart J. 2017;38(44):3282–92. https://doi.org/10.1093/eurheartj/ehx508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sowers JR, White WB, Pitt B, Whelton A, Simon LS, Winer N, Kivitz A, van Ingen H, Brabant T, Fort JG, Celecoxib Rofecoxib Efficacy and Safety in Comorbidities Evaluation Trial (CRESCENT) Investigators. The effects of cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory therapy on 24-hour blood pressure in patients with hypertension, osteoarthritis, and type 2 diabetes mellitus. Arch Intern Med. 2005;165(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  171. Whelton A, White WB, Bello AE, Puma JA, Fort JG, SUCCESS-VII Investigators. Effects of celecoxib and rofecoxib on blood pressure and edema in patients > or = 65 years of age with systemic hypertension and osteoarthritis. Am J Cardiol. 2002;90(9):959–63.

    Article  CAS  PubMed  Google Scholar 

  172. Pepine CJ, Gurbel PA. Cardiovascular safety of NSAIDs: additional insights after PRECISION and point of view. Clin Cardiol. 2017;40(12):1352–6. https://doi.org/10.1002/clc.22814.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med. 2018;130(1):55–71. https://doi.org/10.1080/00325481.2018.1412799.

    Article  PubMed  Google Scholar 

  174. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal antiiInflammatory drug use in the elderly. Aging Dis. 2018;9(1):143–50. https://doi.org/10.14336/AD.2017.0306.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fischer LM, Schlienger RG, Matter CM, Jick H, Meier CR. Discontinuation of nonsteroidal anti-inflammatory drug therapy and risk of acute myocardial infarction. Arch Intern Med. 2004;164(22):2472–6.

    Article  CAS  PubMed  Google Scholar 

  176. Kurth T, Glynn RJ, Walker AM, et al. Inhibition of clinical benefits of aspirin on first myocardial infarction by nonsteroidal antiinflammatory drugs. Circulation. 2003;108(10):1191–5.

    Article  CAS  PubMed  Google Scholar 

  177. Maniar KH, Jones IA, Gopalakrishna R, Vangsness CT Jr. Lowering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage. Expert Opin Pharmacother. 2018;19(2):93–102. https://doi.org/10.1080/14656566.2017.1414802.

    Article  CAS  PubMed  Google Scholar 

  178. Moore N, Scheiman JM. Gastrointestinal safety and tolerability of oral non-aspirin over-the-counter analgesics. Postgrad Med. 2018;8:1–12. https://doi.org/10.1080/00325481.2018.1429793.

    Article  Google Scholar 

  179. Pathan SA, Mitra B, Cameron PA. A systematic review and meta-analysis comparing the efficacy of nonsteroidal anti-inflammatory drugs, opioids, and paracetamol in the treatment of acute renal colic. Eur Urol. 2018;73(4):583–95. pii: S0302-2838(17)30977-6. https://doi.org/10.1016/j.eururo.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  180. Athersuch TJ, Antoine DJ, Boobis AR, Coen M, Daly AK, Possamai L, Nicholson JK, Wilson ID. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: a perspective. Toxicol Res (Camb). 2018;7(3):347–57. https://doi.org/10.1039/c7tx00340d.

    Article  CAS  Google Scholar 

  181. da Silva DPB, Florentino IF, da Silva DM, Lino RC, Cardoso CS, Moreira LKS, Vasconcelos GA, Vinhal DC, Cardoso ACD, Villavicencio B, Verli H, Vaz BG, Lião LM, da Cunha LC, Menegatti R, Costa EA. Molecular docking and pharmacological/toxicological assessment of a new compound designed from celecoxib and paracetamol by molecular hybridization. Inflammopharmacology. 2018; https://doi.org/10.1007/s10787-018-0516-7. Epub ahead of print.

  182. Bateman DN. Paracetamol poisoning: beyond the nomogram. Br J Clin Pharmacol. 2015;80(1):45–50. https://doi.org/10.1111/bcp.12604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Roberts E, Delgado Nunes V, Buckner S, Latchem S, Constanti M, Miller P, Doherty M, Zhang W, Birrell F, Porcheret M, Dziedzic K, Bernstein I, Wise E, Conaghan PG. Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis. 2016;75(3):552–9. https://doi.org/10.1136/annrheumdis-2014-206914.

    Article  CAS  PubMed  Google Scholar 

  184. Vliegenthart AD, Shaffer JM, Clarke JI, Peeters LE, Caporali A, Bateman DN, Wood DM, Dargan PI, Craig DG, Moore JK, Thompson AI, Henderson NC, Webb DJ, Sharkey J, Antoine DJ, Park BK, Bailey MA, Lader E, Simpson KJ, Dear JW. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci Rep. 2015;5:15501. https://doi.org/10.1038/srep15501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Curhan GC, Willett WC, Rosner B, Stampfer MJ. Frequency of analgesic use and risk of hypertension in younger women. Arch Intern Med. 2002;162(19):2204–8.

    Article  CAS  PubMed  Google Scholar 

  186. Forman JP, Stampfer MJ, Curhan GC. Non-narcotic analgesic dose and risk of incident hypertension in US women. Hypertension. 2005;46(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  187. White WB, Kloner RA, Angiolillo DJ, Davidson MH. Cardiorenal safety of OTC analgesics. J Cardiovasc Pharmacol Ther. 2018;23(2):103–18. https://doi.org/10.1177/1074248417751070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chan AT, Manson JE, Albert CM, Chae CU, Rexrode KM, Curhan GC, Rimm EB, Willett WC, Fuchs CS. Nonsteroidal antiinflammatory drugs, acetaminophen, and the risk of cardiovascular events. Circulation. 2006;113(12):1578–87.

    Article  CAS  PubMed  Google Scholar 

  189. Dedier J, Stampfer M, Hankinson S, Willett WC, Speizer FE, Curhan GC. Nonnarcotic analgesic use and the risk of hypertension in US women. Hypertension. 2002;40:604–8.

    Article  CAS  PubMed  Google Scholar 

  190. de Vries F, Setakis E, van Staa TP. Concomitant use of ibuprofen and paracetamol and the risk of major clinical safety outcomes. Br J Clin Pharmacol. 2010;70:429–38. https://doi.org/10.1111/j.1365-2125.2010.03705.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Beach SR, Celano CM, Noseworthy PA, Januzzi JL, Huffman JC. QTc prolongation, torsades de pointes, and psychotropic medications. Psychosomatics. 2013;54(1):1–13.

    Article  PubMed  Google Scholar 

  192. Beach SR, Kostis WJ, Celano CM, Januzzi JL, Ruskin JN, Noseworthy PA, Huffman JC. Meta-analysis of selective serotonin reuptake inhibitor-associated QTc prolongation. J Clin Psychiatry. 2014;75(5):e441–9.

    Article  PubMed  Google Scholar 

  193. Funai Y, Funao T, Ikenaga K, Takahashi R, Hase I, Nishikawa K. Use of tricyclic antidepressants as analgesic adjuvants results in nonhazardous prolongation of the QTc interval. Osaka City Med J. 2014;60(1):11–9.

    CAS  PubMed  Google Scholar 

  194. Hasnain M, Vieweg WV. QTc interval prolongation and torsade de pointes associated with second-generation antipsychotics and antidepressants: a comprehensive review. CNS Drugs. 2014;28(10):887–920.

    Article  CAS  PubMed  Google Scholar 

  195. Jasiak NM, Bostwick JR. Risk of QT/QTc prolongation among newer nonSSRI antidepressants. Ann Pharmacother. 2014;48(12):1620–8.

    Article  CAS  PubMed  Google Scholar 

  196. Maljuric NM, Noordam R, Aarts N, Niemeijer MN, van den Berg ME, Hofman A, Kors JA, Stricker BH, Visser LE. Use of selective serotonin re-uptake inhibitors and the heart rate corrected QT interval in a real-life setting: the population-based Rotterdam Study. Br J Clin Pharmacol. 2015;80(4):698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sala M, Coppa F, Cappucciati C, Brambilla P, d’Allio G, Caverzasi E, Barale F, De Ferrari GM. Antidepressants: their effects on cardiac channels, QT prolongation and Torsade de Pointes. Curr Opin Investig Drugs. 2006;7(3):256–63.

    CAS  PubMed  Google Scholar 

  198. Spindelegger CJ, Papageorgiou K, Grohmann R, Engel R, Greil W, Konstantinidis A, Agelink MW, Bleich S, Ruether E, Toto S, Kasper S. Cardiovascular adverse reactions during antidepressant treatment: a drug surveillance report of German-speaking countries between 1993 and 2010. Int J Neuropsychopharmacol. 2014;18(4). pii: pyu080. https://doi.org/10.1093/ijnp/pyu080.

  199. Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: role of the pharmacist in risk assessment, prevention and management. Can Pharm J (Ott). 2016;149(3):139–52.

    Article  Google Scholar 

  200. Varney A, Womersley K, Agius M. What are the risks associated with the use of NSAIDs as an adjunct to SSRIs for treatment of depression? An evaluation of current evidence. Psychiatr Danub. 2017;29(Suppl 3):375–82.

    CAS  PubMed  Google Scholar 

  201. Johnson EM, Whyte E, Mulsant BH, Pollock BG, Weber E, Begley AE, Reynolds CF. Cardiovascular changes associated with venlafaxine in the treatment of late-life depression. Am J Geriatr Psychiatry. 2006;14(9):796–802.

    Article  PubMed  Google Scholar 

  202. Roberts RL, Joyce PR, Mulder RT, Begg EJ, Kennedy MA. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  203. Veith RC, Raskind MA, Caldwell JH, Barnes RF, Gumbrecht G, Ritchie JL. Cardiovascular effects of tricyclic antidepressants in depressed patients with chronic heart disease. N Engl J Med. 1982;306(16):954–9.

    Article  CAS  PubMed  Google Scholar 

  204. Kim J, Phongsamran P, Park S. Use of antidepressant drugs in transplant recipients. Prog Transplant. 2004;14(2):98–104.

    Article  PubMed  Google Scholar 

  205. Lee YC, Lin CH, Lin MS, Lin JW, Chang CH, Lai MS. Effects of selective serotonin reuptake inhibitors versus tricyclic antidepressants on cerebrovascular events: a nationwide population-based cohort study. J Clin Psychopharmacol. 2013;33(6):782–9.

    Article  CAS  PubMed  Google Scholar 

  206. Thanacoody HK, Thomas SH. Tricyclic antidepressant poisoning: cardiovascular toxicity. Toxicol Rev. 2005;24(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  207. Kahl KG, Westhoff-Bleck M, Krüger THC. Effects of psychopharmacological treatment with antidepressants on the vascular system. Vascular Pharmacol. 2017;96–98:11–8. https://doi.org/10.1016/j.vph.2017.07.004.

    Article  CAS  Google Scholar 

  208. Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: mechanistic insights. Neuroscience. 2016;338:183–206. https://doi.org/10.1016/j.neuroscience.2016.06.057.

    Article  CAS  PubMed  Google Scholar 

  209. Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016;4(2):e00205. https://doi.org/10.1002/prp2.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Moore RA, Wiffen PJ, Derry S, McQuay HJ. Gabapentin for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. 2011; (3): CD007938.

    Google Scholar 

  211. Zaccara G, Gangemi P, Perucca P, Specchio L. The adverse event profile of pregabalin: a systematic review and metaanalysis of randomized controlled trials. Epilepsia. 2011;52:826–36.

    Article  CAS  PubMed  Google Scholar 

  212. Dieleman JM, Nierich AP, Rosseel PM, van der Maaten JM, Hofland J, Diephuis JC, Schepp RM, Boer C, Moons KG, van Herwerden LA, Tijssen JG, Numan SC, Kalkman CJ, van Dijk D. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA. 2012;308:1761–7.

    Article  PubMed  Google Scholar 

  213. Dieleman JM, van Paassen J, van Dijk D, Arbous MS, Kalkman CJ, Vandenbroucke JP, van der Heijden GJ, Dekkers OM. Prophylactic corticosteroids for cardiopulmonary bypass in adults. Cochrane Database Syst Rev. 2011;5:CD005566.

    Google Scholar 

  214. Sauerland S, Nagelschmidt M, Mallmann P, Neugebauer EA. Risks and benefits of preoperative high dose methylprednisolone in surgical patients: a systematic review. Drug Saf. 2000;23:449–61.

    Article  CAS  PubMed  Google Scholar 

  215. Fardet L, Fève B. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs. 2014;74(15):1731–45. https://doi.org/10.1007/s40265-014-0282-9.

    Article  CAS  PubMed  Google Scholar 

  216. Langley P, Muller-Schwefe G, Nicolaou A, Liedgens H, Pergolizzi J, Varrassi G. The societal impact of pain in the European Union: health-related quality of life and healthcare resource utilization. J Med Econ. 2010;13(3):571–81.

    Article  PubMed  Google Scholar 

  217. Peppin JF, Cheatle MD, Kirsh KL, McCarberg BH. The complexity model: a novel approach to improve chronic pain care. Pain Med. 2015;16:653–66.

    Article  PubMed  Google Scholar 

  218. Callahan D. Managed care and the goals of medicine. J Am Geriatr Soc. 1998;46:385–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giustino Varrassi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Varrassi, G., Pergolizzi, J., Peppin, J.F., Paladini, A. (2019). Analgesic Drugs and Cardiac Safety. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics