Skip to main content

The Role of Emotions, Stress, and Mental State in Inflammatory Processes Perturbing Brain-Heart Dialogue

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

Emotions and stress have a great impact on mental states and well-being, and the mind-body problem has historically been conceived as a continuum from dualism to physicalism. Stress and emotions are undoubtedly defined by the physical underpinnings but cannot be reduced to them. Mental states, such as beliefs, goals, or values, play also an essential role. Moreover, despite stressful events are constitutive part of our everyday, when personal resources are not enough to deal with the situation, the physical homeostasis can be seriously threatened. An important point is to explore possible pathways connecting entities like emotion and stress with the physical body, and neuroinflammation seems to be an important candidate.

This chapter aims to address the relationship between stress, emotions, and mental states in those inflammatory processes affecting cardiovascular system. In particular, the interaction of sympathetic nervous system and cholinergic anti-inflammatory pathway in modulate inflammation during stressful events or mental disorders will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mather M, Thayer JF. How heart rate variability affects emotion regulation brain networks. Curr Opin Behav Sci. 2018;19:98–104.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthews E. Mental disorder: can Merleau-Ponty take us beyond the “mind–brain” problem? In: Fulford KWM, Davies M, Gipps RGT, Graham G, Sadler JZ, Stanghellini G, et al., editors. The Oxford handbook of philosophy and psychiatry. Oxford: Oxford University Press; 2013.

    Google Scholar 

  3. Hamann S. Mapping discrete and dimensional emotions onto the brain. Trends Cogn Sci. 2012;16(9): 458–66.

    Article  PubMed  Google Scholar 

  4. Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return brain from of Phineas Gage: clues about the brain from the skull of a famous patient. Science (80–). 1994;264(5162):1102–5.

    Article  CAS  Google Scholar 

  5. Niedenthal PM. Embodying emotion. Science (80–). 2007;316(5827):1002–5.

    Article  CAS  Google Scholar 

  6. Olino TM, Mennies RJ, Wojcieszak ZK. Personality-stress vulnerability models. In: The Oxford handbook of stress and mental health. Oxford: Oxford University Press; 2018. p. 1–33.

    Google Scholar 

  7. Ellis BJ, Del Giudice M. Developmental adaptation to stress: an evolutionary perspective. Annu Rev Psychol. 2018;70(1):111–39.

    Article  PubMed  Google Scholar 

  8. Selye H. The stress of life. New York: McGraw-Hill; 1956. p. xvi, 324.

    Google Scholar 

  9. Cannon WB. The wisdom of the body. 2nd ed. Oxford, UK: W. W. Norton; 1939.

    Google Scholar 

  10. McEwen BS. Stressed or stressed out: what is the difference? J Psychiatry Neurosci. 2005;30(5):315–8.

    PubMed  PubMed Central  Google Scholar 

  11. Logan JG, Barksdale DJ. Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. J Clin Nurs. 2008;17(7b):201–8.

    Article  PubMed  Google Scholar 

  12. Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Handbook of life stress, cognition and health. New York: Wiley; 1988. p. 629–47.

    Google Scholar 

  13. Dohrenwend BP, Turner JB, Turse NA, Adams BG, Koenen KC, Marshall R. The psychological risks of Vietnam for U.S. veterans: a revisit with new data and methods. Science. 2006;743:979–82.

    Article  CAS  Google Scholar 

  14. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.

    Article  PubMed  CAS  Google Scholar 

  15. Boyes ME, Hasking PA, Martin G. Adverse life experience and psychological distress in adolescence: moderating and mediating effects of emotion regulation and rumination. Stress Health. 2016;32(4): 402–10.

    Article  PubMed  Google Scholar 

  16. Richardson CME. Emotion regulation in the context of daily stress: impact on daily affect. Personal Individ Differ. 2017;112:150–6.

    Article  Google Scholar 

  17. Lewis EJ, Yoon KL, Joormann J. Emotion regulation and biological stress responding: associations with worry, rumination, and reappraisal. Cognit Emot. 2018;32(7):1487–98.

    Article  Google Scholar 

  18. Martin RC, Dahlen ER. Cognitive emotion regulation in the prediction of depression, anxiety, stress, and anger. Personal Individ Differ. 2005;39(7):1249–60.

    Article  Google Scholar 

  19. Fink G. In: Fink G, editor. Stress: concepts, cognition, emotion, and behavior. Handbook of stress series, vol. 1. Cambridge, MA: Academic; 2016.

    Google Scholar 

  20. Porges SW. The polyvagal perspective. Biol Psychol. 2007;74(2):116–43.

    Article  PubMed  Google Scholar 

  21. Reed SF, Ohel G, David R, Porges SW. A neural explanation of fetal heart rate patterns: a test of the polyvagal theory. Dev Psychobiol. 1999;35(2): 108–18.

    Article  PubMed  CAS  Google Scholar 

  22. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201–16.

    Article  PubMed  CAS  Google Scholar 

  23. Singh RB, Kartik C, Otsuka K, Pella D, Pella J. Brain-heart connection and the risk of heart attack. Biomed Pharmacother. 2002;56(Suppl 2):257s–65s.

    Article  PubMed  Google Scholar 

  24. Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress Int J Biol Stress. 2009;12(1):1–21.

    Article  CAS  Google Scholar 

  25. Beauchaine TP, Bell ZE. Respiratory sinus arrhythmia as a transdiagnostic biomarker of emotion dysregulation. In: Oxford handbook of emotion dysregulation. New York: Oxford University Press; 2018. p. 1–26.

    Google Scholar 

  26. Beauchaine TP, Thayer JF. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int J Psychophysiol. 2015;98:338–50.

    Article  PubMed  Google Scholar 

  27. Beauchaine T. Vagal tone, development, and Gray’s motivational theory: toward an integrated model of autonomic nervous system functioning in psychopathology. Dev Psychopathol. 2001;13(2): 183–214.

    Article  PubMed  CAS  Google Scholar 

  28. Yaptangco M, Crowell SE, Baucom BR, Bride DL, Hansen EJ. Examining the relation between respiratory sinus arrhythmia and depressive symptoms in emerging adults: a longitudinal study. Biol Psychol. 2015;110:34–41.

    Article  PubMed  Google Scholar 

  29. Kidwell M, Ellenbroek BA. Heart and soul: heart rate variability and major depression. Behav Pharmacol. 1998;2018(29):152–64.

    Google Scholar 

  30. Kemp AH, Quintana DS. The relationship between mental and physical health: insights from the study of heart rate variability. Int J Psychophysiol. 2013; 89(3):288–96.

    Article  PubMed  Google Scholar 

  31. Yaroslavsky I, Rottenberg J, Bylsma LM, Jennings JR, George C, Baji I, et al. Parasympathetic nervous system activity predicts mood repair use and its effectiveness among adolescents with and without histories of major depression. J Abnorm Psychol. 2016;125(3):323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kovacs M, Yaroslavsky I, Rottenberg J, George CJ, Kiss E, Halas K, et al. Maladaptive mood repair, atypical respiratory sinus arrhythmia, and risk of a recurrent major depressive episode among adolescents with prior major depression. Psychol Med. 2016;46(10):2109–19.

    Article  PubMed  CAS  Google Scholar 

  33. Vazquez L, Blood JD, Wu J, Chaplin TM, Hommer RE, Rutherford HJ, et al. High frequency heart-rate variability predicts adolescent depressive symptoms, particularly anhedonia, across one year. J Affect Disord. 2016;196:243–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rottenberg J, Salomon K, Gross JJ, Gotlib IH. Vagal withdrawal to a sad film predicts subsequent recovery from depression. Psychophysiology. 2005;42(3): 277–81.

    Article  PubMed  Google Scholar 

  35. Mathewson KJ, Schmidt LA, Miskovic V, Santesso DL, Duku E, McCabe RE, et al. Does respiratory sinus arrhythmia (RSA) predict anxiety reduction during cognitive behavioral therapy (CBT) for social anxiety disorder (SAD)? Int J Psychophysiol. 2013;88(2):171–81.

    Article  PubMed  Google Scholar 

  36. Wendt J, Hamm AO, Pane-Farre CA, Thayer JF, Gerlach A, Gloster AT, et al. Pretreatment cardiac vagal tone predicts dropout from and residual symptoms after exposure therapy in patients with panic disorder and agoraphobia. Psychother Psychosom. 2018;87(3):187–9.

    Article  PubMed  Google Scholar 

  37. Yaroslavsky I, Rottenberg J, Kovacs M. Atypical patterns of respiratory sinus arrhythmia index an endophenotype for depression. Dev Psychopathol. 2014;26(4):1337–52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brosschot JF, Gerin W, Thayer JF. The perseverative cognition hypothesis: a review of worry, prolonged stress-related physiological activation, and health. J Psychosom Res. 2006;60(2):113–24.

    Article  PubMed  Google Scholar 

  39. Gross JJ. The emerging field of emotion regulation: an integrative review. Rev Gen Psychol. 1998;2(3): 271–99.

    Article  Google Scholar 

  40. Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017;151:105–16.

    Article  PubMed  Google Scholar 

  41. Topper M, Emmelkamp PMG, Watkins E, Ehring T. Prevention of anxiety disorders and depression by targeting excessive worry and rumination in adolescents and young adults: a randomized controlled trial. Behav Res Ther. 2017;90:123–36.

    Article  PubMed  Google Scholar 

  42. Krkovic K, Clamor A, Lincoln TM. Emotion regulation as a predictor of the endocrine, autonomic, affective, and symptomatic stress response and recovery. Psychoneuroendocrinology. 2018;94:112–20.

    Article  PubMed  Google Scholar 

  43. Ottaviani C, Thayer JF, Verkuil B, Lonigro A, Medea B, Couyoumdjian A, et al. Physiological concomitants of perseverative cognition: a systematic review and meta-analysis. Psychol Bull. 2016;142: 231.

    Article  PubMed  Google Scholar 

  44. Ottaviani C. Brain-heart interaction in perseverative cognition. Psychophysiology. 2018;55(7):1–14.

    Article  Google Scholar 

  45. Rood L, Roelofs J, Bögels SM, Meesters C. Stress-reactive rumination, negative cognitive style, and stressors in relationship to depressive symptoms in non-clinical youth. J Youth Adolesc. 2012;41(4): 414–25.

    Article  PubMed  Google Scholar 

  46. Lam S, Dickerson SS, Zoccola PM, Zaldivar F. Emotion regulation and cortisol reactivity to a social-evaluative speech task. Psychoneuroendocrinology. 2009;34(9):1355–62.

    Article  PubMed  CAS  Google Scholar 

  47. Roger D, Najarian B. The relationship between emotional rumination and cortisol secretion under stress. Personal Individ Differ. 1998;24(4):531–8.

    Article  Google Scholar 

  48. Zoccola PM, Dickerson SS. Assessing the relationship between rumination and cortisol: a review. J Psychosom Res. 2012;73(1):1–9.

    Article  PubMed  Google Scholar 

  49. Mcrae K. ScienceDirect. Cognitive emotion regulation: a review of theory and scientific findings. Curr Opin Behav Sci. 2016;10:119.

    Article  Google Scholar 

  50. Denson TF, Creswell JD, Terides MD, Blundell K. Cognitive reappraisal increases neuroendocrine reactivity to acute social stress and physical pain. Psychoneuroendocrinology. 2014;49(1):69–78.

    Article  PubMed  CAS  Google Scholar 

  51. Schoenberg PLA, David AS. Biofeedback for psychiatric disorders: a systematic review. Appl Psychophysiol Biofeedback. 2014;39(2):109–35.

    Article  PubMed  Google Scholar 

  52. Goessl VC, Curtiss JE, Hofmann SG. The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychol Med. 2017; 47(15):2578–86.

    Article  PubMed  CAS  Google Scholar 

  53. Remue J, Vanderhasselt MA, Baeken C, Rossi V, Tullo J, De Raedt R. The effect of a single HF-rTMS session over the left DLPFC on the physiological stress response as measured by heart rate variability. Neuropsychology. 2016;30(6):756–66. https://doi.org/10.1037/neu0000255. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L607178732%0A

  54. Wampold BE, Imel ZE. The great psychotherapy debate: the evidence for what makes psychotherapy work. 2nd ed. New York: Routledge/Taylor & Francis Group; 2015. p. x, 323. (Counseling and psychotherapy).

    Book  Google Scholar 

  55. Hänsel A, Hong S, Cámara RJA, von Känel R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neurosci Biobehav Rev. 2010;35(1):115–21.

    Article  PubMed  Google Scholar 

  56. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  PubMed  CAS  Google Scholar 

  57. Calvillo L, Gironacci MM, Crotti L, Meroni PL, Parati G. Neuroimmune crosstalk in the pathophysiology of hypertension. Nat Rev Cardiol. 2019; 16(8):476–90.

    Article  PubMed  Google Scholar 

  58. Cuffee Y, Ogedegbe C, Williams NJ, Ogedegbe G, Schoenthaler A. Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep. 2014;16(10):1–18.

    Article  Google Scholar 

  59. Parati G. Antihypertensive therapy in 2014: linking pathophysiology to antihypertensive treatment. Nat Rev Cardiol. 2015;12(2):77–9. Available from: http://www.nature.com/doifinder/10.1038/nrcardio.2014.221

  60. Zanchetti A, Thomopoulos C, Parati G. Randomized controlled trials of blood pressure lowering in hypertension: a critical reappraisal. Circ Res. 2015; 116(6):1058–73.

    Article  PubMed  CAS  Google Scholar 

  61. Kim MJ, Lim NK, Choi SJ, Park HY. Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study. Hypertens Res. 2015;38(11):783–9. https://doi.org/10.1038/hr.2015.72.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang CJ, Webb HE, Zourdos MC, Acevedo EO. Cardiovascular reactivity, stress, and physical activity. Front Physiol. 2013;4:1–13.

    Article  Google Scholar 

  63. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76(3):181–9.

    Article  PubMed  Google Scholar 

  64. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002; 52(1):1–23.

    Article  PubMed  Google Scholar 

  65. Appleton AA, Buka SL, Loucks EB, Gilman E, Kubzansky LD. Divergent associations of adaptive and maladaptive emotion regulation strategies with inflammation. Health Psychol. 2013;32(7):748–56.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Munakata M. Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings. Hypertens Res. 2018; 41(8):553–69.

    Article  PubMed  Google Scholar 

  67. Dantzer R, Connor JCO, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fagundes CP, Brown RL, Chen MA, Murdock KW, Saucedo L, LeRoy A, et al. Grief, depressive symptoms, and inflammation in the spousally bereaved. Psychoneuroendocrinology. 2019;100:190–7. https://doi.org/10.1016/j.psyneuen.2018.10.006.

    Article  PubMed  Google Scholar 

  69. Bublitz MH, Vergara-Lopez C, Treter MOR, Stroud LR. Association of lower socioeconomic position in pregnancy with lower diurnal cortisol production and lower birthweight in male infants. Clin Ther. 2016;38:265–74.

    Article  PubMed  CAS  Google Scholar 

  70. Mitchell AM, Christian LM. Repetitive negative thinking, meaning in life, and serum cytokine levels in pregnant women: varying associations by socioeconomic status. J Behav Med. 2019. https://doi.org/10.1007/s10865-019-00023-6.

  71. Das A. Psychosocial distress and inflammation: which way does causality flow? Soc Sci Med. 2016;170:1–8.

    Article  PubMed  Google Scholar 

  72. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42(1):254–70. https://doi.org/10.1038/npp.2016.146.

    Article  PubMed  CAS  Google Scholar 

  73. Powers A, Michopoulos V, Conneely K, Gluck R, Dixon H, Wilson J, et al. Emotion dysregulation and inflammation in African-American women with type 2 diabetes. Neural Plast. 2016;2016(Article ID 8926840):1–10. Available from: http://www.hindawi.com/journals/np/2016/8926840/

  74. Kim ES, Smith J, Kubzansky LD. Prospective study of the association between dispositional optimism and incident heart failure. Circulation. 2014; 7(3):394–400.

    PubMed  Google Scholar 

  75. Lowen A. Bioenergetics: the revolutionary therapy that uses the language of the body to heal the problems of the mind. New edition. London: Penguin Books Ltd; 1994. Available from: https://www.bookdepository.com/Bioenergetics-Alexander-Lowen/9780140194715

  76. Lowen, A. (1958). Physical dynamics of character structure: Bodily form and movement in analytic therapy. Grune & Stratton open library publisher. https://openlibrary.org/publishers/Grune_&_Stratton.

  77. De Hert M, Detraux J, Vancampfort D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues Clin Neurosci. 2018; 20:31–40.

    PubMed  PubMed Central  Google Scholar 

  78. Lichtman JH, Froelicher ES, Blumenthal JA, Carney RM, Doering LV, Frasure-Smith N, et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation. 2014;129:1350–69.

    Article  PubMed  Google Scholar 

  79. Cohen BE, Edmondson D, Kronish IM. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens. 2015;28:1295–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Penninx BW. Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev. 2017;74:277–86. https://doi.org/10.1016/j.neubiorev.2016.07.003.

    Article  PubMed  Google Scholar 

  81. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004; 350(14):1387–97.

    Article  PubMed  CAS  Google Scholar 

  82. Fioranelli M, Bottaccioli AG, Bottaccioli F, Bianchi M, Rovesti M, Roccia MG. Stress and inflammation in coronary artery disease: a review psychoneuroendocrineimmunology-based. Front Immunol. 2018;9:2031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu H, Luiten PGM, Eisel ULM, Dejongste MJL, Schoemaker RG. Depression after myocardial infarction: TNF-α-induced alterations of the blood-brain barrier and its putative therapeutic implications. Neurosci Biobehav Rev. 2013;37(4):561–72. https://doi.org/10.1016/j.neubiorev.2013.02.004.

    Article  PubMed  CAS  Google Scholar 

  84. Lackland DT, Weber MA. Global burden of cardiovascular disease and stroke: hypertension at the core. Can J Cardiol. 2015;31(5):659–71.

    Article  Google Scholar 

  85. Lau DH, Nattel S, Kalman JM, Sanders P. Modifiable risk factors and atrial fibrillation. Circulation. 2017;136(6):583–96.

    Article  PubMed  Google Scholar 

  86. Hernandorena I, Duron E, Vidal JS, Hanon O. Treatment options and considerations for hypertensive patients to prevent dementia. Expert Opin Pharmacother. 2017;18(10):989–1000.

    Article  PubMed  CAS  Google Scholar 

  87. Troy AS, Shallcross AJ, Mauss IB. A person-by-situation approach to emotion regulation: cognitive reappraisal can either help or hurt, depending on the context. Psychol Sci. 2013;24(12):2505–14.

    Article  PubMed  Google Scholar 

  88. Gianaros PJ, Marsland AL, Kuan DC, Schirda BL, Jennings JR, Sheu LK, et al. An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biol Psychiatry. 2014;75(9):738–45.

    Article  PubMed  CAS  Google Scholar 

  89. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101(15):1767–72.

    Article  PubMed  CAS  Google Scholar 

  90. Dusi V, Ghidoni A, Ravera A, De Ferrari GM, Calvillo L. Chemokines and heart disease: a network connecting cardiovascular biology to immune and autonomic nervous systems. Mediat Inflamm. 2016; 2016:Article ID 5902947.

    Article  CAS  Google Scholar 

  91. Ataka K, Asakawa A, Nagaishi K, Kaimoto K, Sawada A, Hayakawa Y, et al. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice. PLoS One. 2013;8(11):1–14.

    Article  CAS  Google Scholar 

  92. Zubcevic J, Santisteban MM, Pitts T, Baekey DM, Perez PD, Bolser DC, et al. Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. Hypertension. 2014;63(6): 129–40.

    Article  CAS  Google Scholar 

  93. Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res. 2015;117:178–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yellowlees Douglas J, Bhatwadekar AD, Li Calzi S, Shaw LC, Carnegie D, Caballero S, et al. Bone marrow-CNS connections: implications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2012;31(5):481–94. https://doi.org/10.1016/j.preteyeres.2012.04.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kapoor K, Bhandare AM, Farnham MMJ, Pilowsky PM. Alerted microglia and the sympathetic nervous system: a novel form of microglia in the development of hypertension. Respir Physiol Neurobiol. 2016;226:51–62.

    Article  PubMed  CAS  Google Scholar 

  96. Kapoor K, Bhandare AM, Mohammed S, Farnham MMJ, Pilowsky PM. Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats. Auton Neurosci. 2016;198:10–8. https://doi.org/10.1016/j.autneu.2016.05.005.

    Article  PubMed  CAS  Google Scholar 

  97. Kapoor K, Bhandare AM, Nedoboy PE, Mohammed S, Farnham MMJ, Pilowsky PM. Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience. 2016;329: 12–29. https://doi.org/10.1016/j.neuroscience.2016.04.044.

    Article  PubMed  CAS  Google Scholar 

  98. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007; 30(10):527–35.

    Article  PubMed  CAS  Google Scholar 

  99. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 2011; 58(5):500–7.

    Article  PubMed  CAS  Google Scholar 

  100. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4.

    Article  PubMed  Google Scholar 

  101. Kakinuma Y, Ando M, Kuwabara M, Katare RG, Okudela K, Kobayashi M, et al. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1α. FEBS Lett. 2005; 579(10):2111–8.

    Article  PubMed  CAS  Google Scholar 

  102. Uitterdijk A, Yetgin T, te Lintel Hekkert M, Sneep S, Krabbendam-Peters I, van Beusekom HM, et al. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res Cardiol. 2015;110(5):1–14.

    Article  Google Scholar 

  103. Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med. 2011;269(1):45–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Cipresso .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cipresso, P., Fernández Alvarez, J., Riva, G., Calvillo, L. (2020). The Role of Emotions, Stress, and Mental State in Inflammatory Processes Perturbing Brain-Heart Dialogue. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics