Skip to main content

Representational Competence in Science Education: From Theory to Assessment

  • Chapter
  • First Online:
Towards a Framework for Representational Competence in Science Education

Abstract

For an adequate comprehension of scientific phenomena, concepts, and experiments, it is necessary to understand several different representations and their interconnections. From a scientific point of view, representational competence (RC) can be understood as students’ ability to correctly generate, interconnect, and translate several representations and use them as problem-solving tools. As theoretical basis for assessing RC, it is not sufficient to only know how students can work with one or several single representations. It is also very important to know how they are able to interconnect representations, for example by translating information from one to another representation-type or adapting representations. Thus, students’ ability to achieve consistency between the overlapping information of a set of representations is a central part of RC and can be called representational coherence ability (RCA). Goal of the study is to develop and evaluate test items for RCA that must require solution processes that focus on representations and interconnections of representations. To vary this focus, two item variants were developed. One variant requires students to relate representations more implicitly and to work only with two representations; the other variant requires students to compare or modify them more explicitly and to use a higher number of representations to solve the tasks. By combining these variants, the spectrum of RC from single or few representations to a system of interconnected representations can be covered. An evaluation of 15 items (488 students) showed acceptable discrimination indexes and reliability on the whole. In particular, the items can be used to assess RCA, and in general, the proposed strategy for item-construction was successful and can be used for the development of further RCA instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33, 131–152.

    Article  Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.

    Article  Google Scholar 

  • Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Cronbach, L., & Snow, R. (1977). Aptitudes and instructional methods: A handbook for research on interactions. New York: Irvington.

    Google Scholar 

  • Devetak, I., Urbančič, M. W., Grm, K. S., Krnel, D., & Glažar, S. A. (2004). Submicroscopic representations as a tool for evaluating students’ chemical conceptions. Acta Chimica Slovenica, 51, 799–814.

    Google Scholar 

  • Dolin, J. (2007). Science education standards and science assessment in Denmark. In D. Waddington, P. Nentwig, & S. Schanze (Eds.), Making it comparable. Standards in science education (pp. 71–82). Waxmann: Münster.

    Google Scholar 

  • Dunbar, K. (1997). How scientists really reason: Scientific reasoning in real-world laboratories. In R. Sternberg & Davidson (Eds.), The nature of insight (pp. 365–396). Cambridge, MA: MIT Press.

    Google Scholar 

  • Eid, M., Gollwitzer, M., & Schmitt, M. (2011). Statistik und Forschungsmethoden. (2. Aufl.) [Statistics and research methods] (2nd ed.). Weinheim: Beltz.

    Google Scholar 

  • Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. The Netherlands: Springer.

    Google Scholar 

  • Goodwin, C. (1995). Seeing in depth. Social Studies of Science, 25, 237–274.

    Article  Google Scholar 

  • Guthrie, J. W. (Ed.). (2002). Encyclopedia of education. New York: Macmillan.

    Google Scholar 

  • Harlen, W. (1999). Effective teaching of science. Edinburgh: The Scottish Council for Research in Education (SCRE).

    Google Scholar 

  • Herrmann, T. (1993). Mentale Repräsentation ein erläuterungsbedürftiger Begriff [mental representation, an explanation needy expression]. In J. Engelkamp & T. Pechmann (Eds.), Mentale Repräsentation (pp. 17–30). Huber: Bern.

    Google Scholar 

  • Kaiser, H. F., & Dickman, K. W. (1959). Analytic determination of common factors. American Psychologist, 14, 425.

    Google Scholar 

  • Kauertz, A. (2008). Schwierigkeitserzeugende Merkmale physikalischer Leistungstestaufgaben [Difficulty-generating features of physics assessment tasks]. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen Band 79. Berlin: Logos Verlag.

    Google Scholar 

  • Kline, P. (2000). The handbook of psychological testing (2nd ed.). London: Routledge.

    Google Scholar 

  • Kozma, R. (2000). Representation and language: The case for representational competence in the chemistry curriculum. Paper presented at the Biennial Conference on Chemical education, Ann Arbor, MI.

    Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in ScienceTeaching, 43(9), 949–968.

    Google Scholar 

  • Kozma, R. B., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Ed.), Visualization in science education. Dordrecht: Springer.

    Google Scholar 

  • Kozma, R. B., Chin, E., Russell, J., & Marx, N. (2000). The role of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the Learning Sciences, 9(2), 105–143.

    Article  Google Scholar 

  • Lee, V. (2009). Examining patterns of visual representation use in middle school science classrooms. Proceedings of the National Association of research in science teaching (NARST) annual meeting compact disc, Garden Grove, CA: Omnipress.

    Google Scholar 

  • Leisen, J. (1998a). Physikalische Begriffe und Sachverhalte. Repräsentationen auf verschiedenen Ebenen [physical notions and concepts. Representations on different levels]. Praxis der Naturwissenschaften Physik, 47(2), 14–18.

    Google Scholar 

  • Leisen, J. (1998b). Förderung des Sprachlernens durch den Wechsel von Symbolisierungsformen im Physikunterricht [Fostering the learning of conversation via the change of symbolizitation-types]. Praxis der Naturwissenschaften Physik, 47(2), 9–13.

    Google Scholar 

  • Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science, Minnesota studies in the philosophy of science (Vol. 15, pp. 129–186). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Nieminen, P., Savinainen, A., & Viiri, J. (2010). Force concept inventory-based multiple-choice test for investigating students’ representational consistency. Phyical Review Special Topics Physics Education Research, 6(2), 1–12.

    Google Scholar 

  • Novak, J. D. (1990). The interplay of theory and methodology. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum. London, New York: Routledge.

    Google Scholar 

  • Ramlo, S. (2008). Validity and reliability of the force and motion conceptual evaluation. American Journal of Physics, 76(9), 882–886.

    Article  Google Scholar 

  • Roth, W. M., & McGinn, M. (1998). Inscriptions: A social practice approach to representations. Review of Educational Research, 68, 35–59.

    Article  Google Scholar 

  • Saniter, A. (2003). Spezifika der Verhaltensmuster fortgeschrittener Studierender der Physik [The specifics of behavior patterns in advanced students of physics]. In H. Niedderer & H. Fischler (Eds.), Studien zum Physiklernen Band 28. Berlin: Logos.

    Google Scholar 

  • Scheid, J. (2013). Multiple Repräsentationen, Verständnis physikalischer Experimente und kognitive Aktivierung: Ein Beitrag zur Entwicklung der Aufgabenkultur [Multiple representations, understanding physics experiments and cognitive activation: A contribution to developing a task culture]. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen, Band 151. Logos Verlag: Berlin, Germany.

    Google Scholar 

  • Scheid, J., Müller, A., Hettmannsperger, R., & Schnotz, W. (2015). Scientific experiments, multiple representations, and their coherence. A task based elaboration strategy for ray optics. In W. Schnotz, A. Kauertz, H. Ludwig, A. Müller, & J. Pretsch (Eds.), Multiple perspectives on teaching and learning. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Scheid, J., Müller A., Hettmannsperger, R. & Kuhn, J. (2017). Erhebung von repräsentationaler Kohärenzfähigkeit von Schülerinnen und Schülern im Themenbereich Strahlenoptik [Assessment of Students Representational Coherence Ability in the Area of Ray Optics]. Zeitschrift für Didaktik der Naturwissenschaften, 23, 181–203.

    Article  Google Scholar 

  • Schnotz, W. (1994). Aufbau von Wissensstrukturen. Untersuchungen zur Kohärenzbildung bei Wissenserwerb mit Texten [Construction of knowledge structures. Research on coherence development during knowledge acquisition with texts]. Beltz, Psychologie-Verl.Union: Weinheim.

    Google Scholar 

  • Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101–119.

    Article  Google Scholar 

  • Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–70). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.

    Article  Google Scholar 

  • Schnotz, W., Baadte, C., Müller, A., & Rasch, R. (2011). Kreatives Denken und Problemlösen mit bildlichen und beschreibenden Repräsentationen [Creative thinking and problem solving with depictoral and descriptive representations]. In R. Sachs-Hombach & R. Totzke (Eds.), Bilder Sehen Denken (pp. 204–252). Köln: Halem Verlag.

    Google Scholar 

  • diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Metarepresentational expertise in children. Journal of Mathematical Behavior, 10(2), 7–160.

    Google Scholar 

  • Sweller, J. (1999). Instructional design in technical areas. Melbourne: ACER Press.

    Google Scholar 

  • Tesch, M. (2005). Das experiment im Physikunterricht [The experiment in physics education]. In H. Niedderer, H. Fischler, & E. Sumfleht (Eds.), Studien zum Physik- und Chemielernen Band 42. Berlin: Logos.

    Google Scholar 

  • Thiele, R. B., & Treagust, D. F. (1994). An interpretive examination of high school chemistry teachers’ analogical explanations. Journal of Research in Science Teaching, 31, 227–242.

    Article  Google Scholar 

  • Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2003). The role of sub-microscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1369.

    Article  Google Scholar 

  • Tsui, C., & Treagust, D. (Eds.). (2013). Multiple representations in biological education. Dordrecht: Springer.

    Google Scholar 

  • Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (Eds.). (2013). Constructing representations to learn in science. Rotterdam: Sense.

    Google Scholar 

  • Weise, G. (1975). Psychologische Leistungstests [Psychological performance tests]. Göttingen: Hogrefe.

    Google Scholar 

  • Wirtz, M., & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität [Rater agreement and rater reliability]. Göttingen: Hogrefe.

    Google Scholar 

Download references

Acknowledgments

We thank all teachers and students from the schools for participating in the study and the federal state Rhineland-Palatinate for the permission to realize it. We are grateful to the German Research Association (DFG, Graduate School GK1561), who funded this research. The opinions reported do not represent the views of the funding body.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Scheid .

Editor information

Editors and Affiliations

Appendix

Appendix

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scheid, J., Müller, A., Hettmannsperger, R., Schnotz, W. (2018). Representational Competence in Science Education: From Theory to Assessment. In: Daniel, K. (eds) Towards a Framework for Representational Competence in Science Education. Models and Modeling in Science Education, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-89945-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89945-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89943-5

  • Online ISBN: 978-3-319-89945-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics