Skip to main content

Optimization of Tool Geometry Parameters for Rotary Peeling Veneer Process Based on TLBO Algorithm

  • Conference paper
  • First Online:
Proceedings of the Third International Symposium on Materials and Sustainable Development (SMSD 2017)

Abstract

Rotary peeling veneer is a very specific machining process, where the chip is the final product. The fact that works related to this manufacturing process are rare, our objective is to investigate on the optimal cutting parameters, tool edge geometry, through the use of Teaching-Learning based optimization (TLBO) algorithm in order to obtain the best quality with the desired thickness of the veneer product. A study is carried out to identify the objective function that best characterize the machining parameters to be optimized. The challenge is to maintain the best possible quality of peeled veneer with the control of the pre-splitting condition and the veneer thickness variation. The developed algorithm, implemented in Matlab, used in this study is described through two pseudo-codes: main algorithm and the TLBO algorithm. In the main algorithm, the whole resolution procedure is prescribed. The second algorithm is dedicated to the description of all steps of the TLBO technique. Preliminary numerical results obtained from TLBO algorithm are consistent with the experimental ones. The proposed numerical model allows us to predict the characteristic tool angles for different chip thicknesses and friction coefficient. The need to use a pressure bar to produce a quality veneer is numerically proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csandy, E., Magoss, E.: Mechanics of the cutting process. In: Mechanics of Wood Machining, p. 1. Springer, Heidelberg (2013)

    Google Scholar 

  2. Hocheng, H.: Machining Technology for Composite Materials Principles and Practice. Woodhead Publishing, Philadelphia (2012)

    Book  Google Scholar 

  3. Kirbach, E.: Saw performance critical to lumber quality, yield. Wood Technol. 39, 22–24 (1995)

    Google Scholar 

  4. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    Google Scholar 

  5. des Spanens von Holz, T.: Mitteilungen von dem Lehrstuhl fur Holzbearbeitung. Fortschrittberichte (1990)

    Google Scholar 

  6. Marchal, R., Mothe, F., Denaud, L.-E., Thibaut, B., Bleron, L.: Cutting forces in wood machining basics and applications in industrial processes, wood machining micromechanics and fracture. Holzforschung (2009)

    Google Scholar 

  7. Koch, P., et al.: Wood machining processes. Wood Machining Processes (1964)

    Google Scholar 

  8. Eyma, F., Méausoone, P.-J., Martin, P.: Study of the properties of thirteen tropical wood species to improve the prediction of cutting forces in mode B. Ann. Forest Sci. 61, 55–64 (2004)

    Google Scholar 

  9. Eyma, F., Méausoone, P.-J., Larricq, P., Marchal, R.: Utilization of a dynamometric pendulum to estimate cutting forces involved during routing. Comparison with actual calculated values. Ann. Forest Sci. 62, 441–447 (2005)

    Article  Google Scholar 

  10. Fischer, R., Gottlober, Ch.: Basics in the optimization of wood cutting in the example of peripheral milling. In: Proceedings of the 16th International Symposium on Wood Machining (2003)

    Google Scholar 

  11. Fischer, R.: Micro processes at cutting edge, some basics of machining wood, Vienna. In: Proceedings of the 2nd International Symposium on Wood Machining (2004)

    Google Scholar 

  12. Palmqvist, J., Lenner, M., Gustafsson, S.I.: Cutting-forces when up-milling in beech. Wood Sci. Technol. 39, 674–684 (2005)

    Article  CAS  Google Scholar 

  13. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  Google Scholar 

  14. Rostovtsev, N.A.: On the theory of elasticity of a non homogeneous medium. J. Appl. Math. Mech. 28, 745–757 (1964)

    Article  Google Scholar 

  15. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties: Part I. Point force. Int. J. Solids Struct. 34, 2357–2392 (1997)

    Article  Google Scholar 

  16. Palanisamy, P., Rajendran, I., Shanmugasundaram, S.: Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. Int. J. Adv. Manuf. Technol. 32, 644–655 (2007)

    Article  Google Scholar 

  17. Saravanan, R., Janakiraman, V.:. Study on reduction of machining time in CNC turning centre by genetic algorithm. In: International Conference on Computational Intelligence and Multimedia Applications (2007)

    Google Scholar 

  18. Armarego, E.J.A., Smith, A.J.R., Wang, J.: Constrained optimization strategies and CAM software for single-pass peripheral milling. Int. J. Prod. Res. 31, 2139–2160 (1993)

    Article  Google Scholar 

  19. Raju, K.V.M.K., Janardhana, G.R., Kumar, P.N., Rao, V.D.P.: Optimization of cutting conditions for surface roughness in CNC end milling. Int. J. Precis. Eng. Manuf. 12, 383–391 (2011)

    Article  Google Scholar 

  20. Tandon, V., El-Mounayri, H., Kishawy, H.: NC end milling optimization using evolutionary computation. Int. J. Mach. Tools Manuf. 42, 595–605 (2002)

    Article  Google Scholar 

  21. Wang, J.: Computer-aided economic optimization of end-milling operations. Int. J. Prod. Econ. 54, 307–320 (1998)

    Article  Google Scholar 

  22. Wang, J., Armarego, E.J.A.: Computer-aided optimization of multiple constraint single pass face milling operations. Mach. Sci. Technol. 5, 77–99 (2001)

    Article  Google Scholar 

  23. Wang, Z.G., Wong, Y.S., Rahman, M.: Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing. Int. J. Adv. Manuf. Technol. 24, 727–732 (2004)

    Article  Google Scholar 

  24. Rao, R.V., Kalyankar, V.D.: Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26, 524–531 (2013)

    Google Scholar 

  25. Yildiz, A.R.: Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int. J. Adv. Manuf. Technol. 66, 1319–1326 (2013)

    Article  Google Scholar 

  26. Rao, R.V., Kalyankar, V.D.: Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26, 524–531 (2013)

    Google Scholar 

  27. Togan, V.: Design of planar steel frames using teaching-learning based optimization. Eng. Struct. 34, 225–232 (2012)

    Article  Google Scholar 

  28. Yu, K., Wang, X., Wang, Z.: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems (2014)

    Article  Google Scholar 

  29. Rao, R.V., Patel, V.: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problem. Int. J. Ind. Eng. Comput. 3, 535–560 (2012)

    Article  Google Scholar 

  30. Tiryaki, S., Malkoçoğlu, A., Özşahin, Ş.: Using artificial neural networks for modeling surface roughness of wood in machining process. Constr. Building Mater. 66, 329–335 (2014)

    Article  Google Scholar 

  31. Gawronski, T.: Optimization of CNC routing operations of wood en furniture parts. Int. J. Adv. Manuf. Technol. 67, 2259–2267 (2013)

    Article  Google Scholar 

  32. Venkata Rao, R., Kalyankar, V.D.: Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm (2012)

    Google Scholar 

  33. Venkata Rao, R., Savsani, V.J.: Mechanical Design Optimization Using Advanced Optimization Techniques. Springer Series in Advanced Manufacturing. Springer, London (2012)

    Google Scholar 

  34. Forest Products Laboratory: Wood handbook—Wood as an engineering material. General Technical report FPL-GTR-190. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bourab Fatma-zohra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fatma-zohra, B., Hamid, A., Abderrachid, H. (2018). Optimization of Tool Geometry Parameters for Rotary Peeling Veneer Process Based on TLBO Algorithm. In: Abdelbaki, B., Safi, B., Saidi, M. (eds) Proceedings of the Third International Symposium on Materials and Sustainable Development. SMSD 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-89707-3_66

Download citation

Publish with us

Policies and ethics