Skip to main content

Controls on Cyclic Sedimentation Within the Neoproterozoic Sirbu Shale, Vindhyan Basin, Central India

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

The present paper dwells upon high frequency lower orders cycles from the Neoproterozoic Sirbu Shale, Vindhyan Supergroup, central India, and aims to extract their causal factors. The Sirbu Shale, characterized by a transgressive lag at its base, is bounded between the coastal playa sediments of the underlying Lower Bhander Sandstone and the marginal marine to fluvial sediments of the overlying Upper Bhander Sandstone. The study focuses on the upper part of the Sirbu Shale that initiates with a thick pyrite rich shale, without bearing any wave features, representing the maximum marine flooding zone (MFZ). Lithofacies analysis suggests a storm dominated outer shelf to foreshore-beach setting. Lithofacies and lithofacies successions interpreted in terms of sequence srtartigraphic framework, suggests that the studied interval represents a shallowing upward prograding succession, designated as a Highstand Systems Tract (HST). Intrinsic studies unravel that the interval incorporates two different orders of high frequency cyclicities, in terms of parasequence and parasequence sets. The parasequences are genetically related shoaling-upward successions bounded by marine flooding surfaces and are mostly formed by autocyclic processes. Nonetheless, the parasequences towards the basal part of the interval shows evidences of geostrophic flows. The parasequence sets, encompassing two to five parasequences, are composed of relatively higher order genetically related shoaling-upward successions. The conspicuous existence of soft-sediment deformational structures at top of each parasequence sets are laterally correlatable. The role of tectonics might have been significant in creating the accommodation space and thereby controlling the cyclic sedimentation as exemplified from the studied interval of the Sirbu Shale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bashforth, A. R., DiMichele, W. A., Eble, C. F., & Nelson, W. J. (2016a). A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): A taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications. Journal of Paleontology, 90, 589–631.

    Article  Google Scholar 

  • Bashforth, A. R., DiMichele, W. A., Eble, C. F., & Nelson, W. J. (2016b). Dryland vegetation from the Middle Pennsylvanian of Indiana (Illinois Basin): The dryland biome in glacioeustatic, paleobiogeographic, and paleoecologic context. Journal of Paleontology, 90, 785–814.

    Article  Google Scholar 

  • Bhattacharya, H. N., & Bhattacharya, B. (2005). Storm event beds in a Paleoproterozoic rift basin, Aravalli Supergroup, Rajasthan, India. Gondwana Research, 8, 231–239.

    Article  Google Scholar 

  • Bhattacharya, H. N., & Bhattacharya, B. (2011). Sole marks in storm beds from a glacially influenced Late Paleozoic shallow sea, Talchir Formation, Talchir Basin, India. Indian Journal of Geosciences, 65(3), 175–188.

    Google Scholar 

  • Bhattacharya, H. N., Bhattacharya, B., Chakraborty, I., & Chakraborty, A. (2004). Sole marks in storm event beds in the permo-carboniferous Talchir Formation, Raniganj Basin, India. Sedimentary Geology, 166, 209–222.

    Article  Google Scholar 

  • Bose, P. K., Banerjee, S., & Sarkar, S. (1997). Slope controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India. Tectonophysics, 269, 151–169.

    Article  Google Scholar 

  • Bose, P. K., Chakraborty, S., & Sarkar, S. (1999). Recognition of ancient aeolian longitudinal dunes: A case study from the Upper Bhander sandstone, Son valley, India. Journal Sedimentary Research, 69, 86–95.

    Article  Google Scholar 

  • Bose, P. K., & Chaudhuri, A. K. (1990). Tide versus storm in epeiric coastal deposition: Two Proterozoic sequences, India. Geological Journal, 25, 81–101.

    Article  Google Scholar 

  • Bose, P. K., Chaudhuri, A., & Seth, A. (1988). Facies, flow and bedform patterns across a storm-dominated inner continental shelf: Proterozoic Kaimur Formation, Rajasthan, India. Sedimentary Geology, 59, 275–293.

    Article  Google Scholar 

  • Bose, P. K., Eriksson, P. G., Sarkar, S., Wright, D. T., Samanta, P., Mukhopadhyay, S., et al. (2012). Sedimentation patterns during the Precambrian: A unique record? Marine and Petroleum Geology, 33(1), 34–68.

    Article  Google Scholar 

  • Bose, P. K., Sarkar, S., Chakraborty, S., & Banerjee, S. (2001). Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, Central India. Sedimentary Geology, 141(2), 395–419.

    Article  Google Scholar 

  • Catuneanu, O. (2006). Principles of sequence stratigraphy (p. 336). Amsterdam: Elsevier Publ.

    Google Scholar 

  • Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., et al. (2009). Towards the standardization of sequence stratigraphy. Earth Science Review, 92(1), 1–33.

    Article  Google Scholar 

  • Catuneanu, O., Galloway, W. E., Kendall, C. G. St. C., Miall, A. D., Posamentier, H. W., Strasser, A., Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245.

    Article  Google Scholar 

  • Catuneanu, O., & Zecchin, M. (2013). High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Marine and Petroleum Geology, 39, 26–38.

    Article  Google Scholar 

  • Cecil, C. B. (2003). The concept of autocyclic and allocyclic controls on sedimentation and strstigraphy, emphasizing the climatic variable. Journal of Sedimentary Research, Special Publication, 77, 13–20.

    Google Scholar 

  • Chakraborty, P. P., Das, P., Das, K., Saha, S., & Balakrishnan, S. (2012). Regressive depositional architecture on a Mesoproterozoic siliciclastic ramp: Sequence stratigraphic and Nd isotopic evidences from Bhalukona Formation, Singhora Group, Chhattisgarh Supergroup, Central India. Precambrian Research, 200–203, 129–148.

    Article  Google Scholar 

  • Chakraborty, P. P., & Sarkar, S. (2005). Episodic emergence of offshore shale and its implications: Late Proterozoic Rewa Shale, Son Valley, Central India. Journal Geological Society of India, 66, 699–712.

    Google Scholar 

  • Chakraborty, P. P., Sarkar, S., & Bose, P. K. (1998). A view point on intracratonic chenier evolution: Clue from a reappraisal of the Proterozoic Ganurgarh Shale, Central India. In B. S. Paliwal (Ed.), The Indian Precambrian (pp. 61–72). Jodhpur: Scientific Publishers (India).

    Google Scholar 

  • Chanda, S. K., & Bhattacharyya, A. (1982). Vindhyan sedimentation and paleogeography: Post Auden developments. In K. S. Valdiya, S. B. Bhatia, & V. K. Gaur (Eds.), Geology of Vindhyanchal (pp. 88–101). Delhi: Hindustan Publishing Corporation.

    Google Scholar 

  • Davis, R. A. (1977). Principles of oceanography (p. 505). Reading, Mass: Addison-Wesley Publishing.

    Google Scholar 

  • Davis, H. R., Byers, C. W., & Pratt, L. (1989). Deposition, mechanism and organic matter in Mowry shale (Cretaceous) Wyoming. AAPG Bulletin, 73, 1103–1116.

    Google Scholar 

  • Dott, R. H., Jr., & Bourgeois, J. (1982). Hummocky stratification: Significance and its variable bedding sequences. Geological Society of America Bulletin, 93, 663–680.

    Article  Google Scholar 

  • Drummond, C. N., & Wilkinson, B. H. (1996). Stratal thickness frequencies and the prevalence of orderedness in stratigraphic sequences. Journal of Geology, 104, 1–18.

    Article  Google Scholar 

  • Eberli, G., & Ginsburg, R. N. (1989). Cenozoic progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations. In P. D. Crevello, J. L. Wilson, J. F. Sarg, & J. F. Read (Eds.), Controls on carbonate platform and basin development (Vol. 44, pp. 339–351). Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication.

    Chapter  Google Scholar 

  • Einsele, G. (1991). Sedimentary basins—Evolution, facies and sediment budget (632p). Berlin: Springer.

    Google Scholar 

  • Eriksson, P. G., Condie, K. C., & Trisgaard, S. (1998). Precambrian clastic sedimentation systems. Sedimentary Geology, 120, 5–53.

    Article  Google Scholar 

  • Eriksson, P. G., Sarkar, S., Banerjee, S., Porada, H., Catuneanu, O., Bose, P. K., et al. (2010). Palaeoenvironmental context of microbial mat related structures in siliciclastic rocks: Examples from Proterozoics of India and South Africa. In J. Seckbach & A. Oren (Eds.), Microbial mats: Modern and ancient microorganisms in stratified systems (pp. 71–108). Berlin: Springer.

    Chapter  Google Scholar 

  • Figueiredo, A. G. (1980). Response of water column to strong wind forcing, southern Brazilian inner shelf: Implications for sand ridge formation. Marine Geology, 35, 367–376.

    Article  Google Scholar 

  • Hota, R. N., Pandya, K. L., & Maejima, W. (2003). Cyclic sedimentation and facies organization of the coal Bearing Barakar Formation, Singrauli Coalfield, Orissa, India: A statistical analysis of subsurface logs. Journal of Geoscience, 46, 1–11.

    Google Scholar 

  • Hota, R. N., & Sahoo, M. (2009). Cyclic sedimentation of the Karharbari Formation (Damuda Group), Talchir Gondwana Basin, Orissa. Journal Geological Society of India, 73(4), 469–478.

    Article  Google Scholar 

  • Jessen, C. A., Rundgren, M., Björck, S., & Hammarlund, D. (2005). Abrupt climatic changes and an unstable transition into a late Holocene Thermal Decline: A multiproxy lacustrine record from southern Sweden. Journal of Quaternary Science, 20, 349–362.

    Article  Google Scholar 

  • Leckie, D. A., & Kristinic, L. F. (1989). Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middle-shelf deposits? Journal of Sedimentary Petrology, 59, 862–870.

    Google Scholar 

  • Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., et al. (2008). Paleomagnetism and Detrital Zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma age for the Purana Basins? Precambrian Research, 164, 137–159.

    Article  Google Scholar 

  • Miall, A. D. (1991). Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Petrology, 61, 497–505.

    Google Scholar 

  • Miall, A. D. (2010). The geology of stratigraphic sequences (532p). Berlin: Springer.

    Book  Google Scholar 

  • Mitchum, R. M., Jr., & van Wagoner, J. C. (1991). High-frequency sequences and their stacking patterns: Sequence stratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology, 70, 131–160.

    Article  Google Scholar 

  • Myrow, P. M., Fischer, W., & Goodge, J. W. (2002). Wave-modified turbidites: Combined-flow shoreline and shelf deposits, Cambrian, Antarctica. Journal of Sedimentary Research, 72(5), 641–656.

    Article  Google Scholar 

  • Myrow, P. M., & Southard, J. B. (1996). Tempestite deposition. Journal of Sedimentary Research, 66, 875–887.

    Google Scholar 

  • Nio, S. D., & Yang, C. S. (1991). Sea-level fluctuations and the geometric variability of tide-dominated sandbodies. Sedimentary Geology, 70, 161–193.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71, 649–656.

    Article  Google Scholar 

  • Olszewski, T. D., & Patzkowsky, M. E. (2003). From cyclothems to sequences: The record of eustacy and climate on an icehouse epeiric platform (Pennsylvanian-Permian, North American mid-continent). Journal Sedimentary Research, 73, 15–30.

    Article  Google Scholar 

  • Pattison, S. A. J. (2005). Storm-influenced prodelta turbidite complex in the lower Kenilworth Member at Hatch Mesa, Book Cliffs, Utah, U.S.A.: Implications for shallow marine facies models. Journal of Sedimentary Research, 75, 420–439.

    Article  Google Scholar 

  • Posamentier, H. W., & Allen, G. P. (1999). SEPM Concepts in Sedimentology and Palaeontology: Vol. 9. Siliciclastic sequence stratigraphy: Concepts and applications (210p). Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  • Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition II—Sequence and systems tract models. In C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. van Wagoner (Eds.), Sea level change—An integrated approach (Vol. 42, pp. 125–154). Tulsa: SEPM Special Publication.

    Chapter  Google Scholar 

  • Quigley, M. C., Sandifordand, M., & Cupper, M. L. (2007). Distinguishing tectonic from climatic controls on range—Front sedimentation. Basin Research, 19, 491–505.

    Article  Google Scholar 

  • Ray, J. S., Veizer, J., & Davis, W. J. (2003). C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events. Precambrian Research, 121, 103–140.

    Article  Google Scholar 

  • Saarse, L. (2015). Cyclic sedimentation pattern in Lake Veetka, Southeast Estonia: A case study. Geologos, 21(1), 59–69.

    Article  Google Scholar 

  • Samanta, P., Mukhopadhyay, S., & Eriksson, P. G. (2016). Forced regressive wedge in the Mesoproterozoic Koldaha Shale, Vindhyan basin, Son Valley, Central India. Journal of Marine and Petroleum Geology, 71, 329–343.

    Article  Google Scholar 

  • Samanta, P., Mukhopadhyay, S., Mandal, A., & Sarkar, S. (2011). Microbial mat structures in profile: The Neoproterozoic Sonia Sandstone, Rajasthan, India. Journal of Asian Earth Sciences, 40, 542–549.

    Article  Google Scholar 

  • Samanta, P., Mukhopadhyay, S., Sarkar, S., & Eriksson, P. G. (2015). Neoproterozoic substrate condition vis-à-vis microbial mat structure and its implications: Sonia Sandstone, Rajasthan, India. Journal of Asian Earth Science, 106, 186–196.

    Article  Google Scholar 

  • Sarkar, S., Banerjee, S., Eriksson, P. G., & Catuneanu, O. (2005). Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India. Sedimentary Geology, 176, 195–209.

    Article  Google Scholar 

  • Sarkar, S., Banerjee, S., Samanta, P., Chakraborty, N., Chakraborty, P. P., Mukhopadhyay, S., et al. (2014). Microbial mat records in siliciclastic rocks: Examples from Four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. Journal of Asian Earth Science, 91, 362–377.

    Article  Google Scholar 

  • Sarkar, S., Banerjee, S., Samanta, P., & Jeevankumar, S. (2006). Micrbial mat-induced sedimentary structures in siliciclastic sediments: Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P. India. Journal of Earth System Science, 115(1), 49–60.

    Article  Google Scholar 

  • Sarkar, S., Bose, P. K., & Eriksson, P. G. (2011). Neoproterozoic tsunamiite: Upper Bhander sandstone, Central India. Sedimentary Geology, 238(1–2), 181–190.

    Article  Google Scholar 

  • Sarkar, S., Bose, P. K., Samanta, P., Sengupta, P., & Eriksson, P. G. (2008). Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Research, 162, 248–263.

    Article  Google Scholar 

  • Sarkar, S., Chakraborty, S., Banerjee, S., & Bose, P. K. (2002a). Facies sequence and cryptic imprint of sag tectonics in late Proterozoic Sirbu Shale, Central India. In W. Altermann & P. Corcoran (Eds.), Precambrian sedimentary environments: A modern approach to ancient depositional systems (Vol. 33, pp. 369–382). Oxford: International Association of Sedimentologists, Special Publication (Blackwell Science).

    Google Scholar 

  • Sarkar, S., Banerjee, S. Chakraborty, S., & Bose, P. K. (2002b). Shelf storm flow dynamics: An insight from the Mesoproterozoic Rampur Shale, central India. Sedimentary Geology, 147, 89–104.

    Article  Google Scholar 

  • Schieber, J. (1986). The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins. Sedimentology, 33, 521–536.

    Article  Google Scholar 

  • Schieber, J. (1998). Possible indicators of microbial mat deposit in shale and sandstones: Example from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A. Sedimentary Geology, 120, 105–124.

    Article  Google Scholar 

  • Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., et al. (2007). Atlases in Geoscience: Vol. 2. Atlas of microbial mat features preserved within the Siliciclastic Rock Record (pp. 117–133). Amsterdam: Elsevier.

    Google Scholar 

  • Schlager, W. (2004). Fractal nature of stratigraphic sequences. Geology, 32, 185–188.

    Article  Google Scholar 

  • Shirai, M., & Tada, R. (2000). Sedimentary successions formed by fifth-order glacio-eustatic cycles in the middle to upper quarternary formations of Oga Peninsula, Northeast Japan. Journal of Sedimentary Research, 70(4), 839–849.

    Article  Google Scholar 

  • Singh, I. B. (1974). Depositional environment of the Upper Vindhyan sediments in the Satna-Maihar area, Madhya Pradesh and its bearing on the evolution of the Vindhyan sedimentation basin. Journal Palaeontological Society of India, 19, 48–70.

    Google Scholar 

  • Skilbeck, C. G., Rolph, T. C., Hill, N., Woods, J., & Wilkens, R. H. (2005). Holocene millennial/centennial-scale multiproxy cyclicity in temperate eastern Australian estuary sediments. Journal of Quaternary Science, 20, 327–347.

    Article  Google Scholar 

  • Sloss, L. L. (1988). Tectonic evolution of the craton in Phanerozoic time. In L. L. Sloss (Ed.), Sedimentary cover—North American Craton (Vol. D-2, pp. 25–51). The Geology of North America, Boulder, Colorado, U.S: Geological Society of America.

    Google Scholar 

  • Snedden, J. W., & Swift, D. J. P. (1991). Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middle-shelf deposits? Reply—Discussion. Journal of Sedimentary Petrology, 61(1), 148–151.

    Article  Google Scholar 

  • Strasser, A., Pittet, B., Hillgärtner, H., & Pasquier, J. B. (1999). Depositional sequences in shallow carbonate-dominated sedimentary systems: Concepts for a high-resolution analysis. Sedimentary Geology, 128, 201–221.

    Article  Google Scholar 

  • Swift, D. J. P., Freeland, G. L., & Young, R. A. (1979). Time and space distribution of megaripples and associated bedforms, Middle Atlantic Bight, North American Atlantic Shelf. Sedimentology, 26, 389–406.

    Article  Google Scholar 

  • Swift, D. J. P., Hudelson, P. M., Brenner, R. L., & Thompson, P. (1987). Shelf construction in a foreland basin: Storm beds, shelf sand-bodies, and shelf-slope deposotional sequences in the Upper Cretaceous Mesaverda Group, Book Cliffs, Uttah. Sedimentology, 34, 423–457.

    Article  Google Scholar 

  • Swift, D. J. P., & Nummedal, D. (1987). Hummocky cross-stratification, tropical hurricanes, and intense winter storms: Discussion. Sedimentology, 34, 338–344.

    Article  Google Scholar 

  • Swift, D. J. P., & Rice, D. D. (1984). Sand bodies on muddy shelves: A model for sedimentation in the Western Interior Cretaceous Seaway, North America. In R. D. Tillman & C. T. Seemers (Eds.), Siliciclastic shelf sediments (Vol. 34, pp. 43–62). Tulsa: SEPM special Publication.

    Chapter  Google Scholar 

  • Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., & Perez-Cruz, C. (1991). The stratigraphic signatures of tectonics, eustasy and sedimentology: An overview. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 617–659). Berlin: Springer.

    Google Scholar 

  • Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S., III, Sangree, J. B., et al. (1977). Seismic stratigraphy and global changes of sea-level. In C. E. Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, pp. 49–212). Tulsa: AAPG Memoir.

    Google Scholar 

  • van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Methods in Exploration Series: Vol. 7. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops (55p). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • van Wagoner, J. C., Posamentier, H. W., & Mitchum, R. M. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In C. K. Wilgus, B.S. Hastings, C. G. St. C. Kendall, H. W Posamentier, C. A. Ross, & J.C. van Wagoner (Eds.), Sea-level changes: An integrated approach (Vol. 42, pp. 39–45). Tulsa: Special Publication Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Venkatachala, B. S., Sharma, M., & Shukla, M. (1996). Age and life in Vindhyans: Facts and conjectures. In A. Bhattacharyya (Ed.), Recent Advances in Vindhyan Geology (Vol. 36, pp. 137–165). Bangalore: Memoirs of the Geological Survey of India.

    Google Scholar 

  • Walker, R. G. (1984). Facies models (p. 317). Newfoundland, Canada: Geological Association Canada.

    Google Scholar 

  • Williams, G. E., & Schmidt, P. W. (1996). Origin and paleomagnetism of the Mesoproterozoic Gangau tilloid (basal Vindhyan Supergroup), Central India. Precambrian Research, 79, 307–325.

    Article  Google Scholar 

Download references

Acknowledgements

PS gratefully acknowledges the financial support received from UGC minor project scheme. SM acknowledges the financial support received from UPE Programme—2, Jadavpur University. All the authors acknowledge their respective Departments for the infrastructural help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, P., Mukhopadhyay, S., Mandal, S., Sarkar, S. (2019). Controls on Cyclic Sedimentation Within the Neoproterozoic Sirbu Shale, Vindhyan Basin, Central India. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_12

Download citation

Publish with us

Policies and ethics