Skip to main content

Deformation of Pyrite at Varying Metamorphic Grades in Sediment-Hosted Base Metal Sulphide Deposits of Rajasthan, India

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Abstract

The ubiquitous iron sulphide, pyrite, occurs in trace amounts in rocks or may form massive pyritic ore bodies with all perceivable gradations in between. Very often it shares the deformational and metamorphic history of its host rocks. Textural characteristics of pyrite, and its behavior in natural ores and in experimental conditions under varying temperature and pressure, have therefore been studied by different workers from time to time. An overview of these studies shows that there is a mismatch between the experimentally achieved deformation mechanisms at different temperature and pressure, and the observed brittle or ductile behaviour of pyrite in naturally deformed sulphide bodies. An attempt is made here to analyze the deformation behaviour of pyrite under different temperature-pressure conditions, by studying pyritic ores in three sediment-hosted Pb–Zn sulphide deposits of Rajasthan (Balaria-Zawar, Rajpura-Dariba and Rampura-Agucha), occurring in broadly similar geological settings, but deformed and metamorphosed at different grades (upper greenschist, middle amphibolite and upper amphibolite to granulite facies respectively). Observations of hand specimens and optical microscopy of pyritic ores from Rajasthan have shown that the mineral behaved in a macroscopically ductile manner—not only in the form of mesoscopic and microscopic folding of layers, but also by distortions, bending and stretching of individual grains. In general, pyrite plasticity increases with temperature as revealed by more definitive evidences of plastic deformation in higher metamorphic grade deposits (e.g. Rajpura-Dariba and Rampura-Agucha) than in lower grade Balaria ores from the Zawar ore district. However, the Balaria ore, characterized by the coexistence of framboidal (sedimentary-diagenetic) and idiomorphic (metamorphic) pyrite, is more intensely folded. Higher grade ores may, on the other hand, induce more grain growth and thereby are likely to lose the evidence of plastic deformation through polygonization and grain coarsening. This may be one reason behind the apparent scarcity of plastic deformation textures observed in pyrite from naturally deformed and metamorphosed sulphide ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, B. K. (1975). Experimental deformation of polycrystalline pyrite: Effects of temperature, confining pressure, strain rate and porosity. Economic Geology, 70, 473–487.

    Article  Google Scholar 

  • Barrie, C. D., Boyle, A. P., Cook, N. J., & Prior, D. J. (2010a). Pyrite deformation textures in the massive sulfide ore deposits of the norwegian caledonides. Tectonophysics, 483, 269–286.

    Article  Google Scholar 

  • Barrie, C. D., Cook, N. J., & Boyle, A. P. (2010b). Textural variation in the pyrite-rich ore deposits of the Røros district, Trondheim region, Norway: Implications for pyrite deformation mechanisms. Mineralium Deposita, 45, 51–68.

    Article  Google Scholar 

  • Barrie, C. D., Pearce, M. A., & Boyle, A. P. (2011). Reconstructing the pyrite deformation mechanism map. Ore Geology Reviews, 39(4), 265–276.

    Article  Google Scholar 

  • Boyle, A. P., Prior, D. J., Banham, M. H., & Timms, N. E. (1998). Plastic deformation of metamorphic pyrite: New evidence from electron-backscatter diffraction and forescatter orientation-contrast imaging. Mineralium Deposita, 34, 71–81.

    Article  Google Scholar 

  • Cook, N. J., Halls, C., & Boyle, A. P. (1993). Deformation and metamorphism of massive sulphides at Sulitjelma Norway. Mineralogical Magazine, 57(1), 67–81.

    Article  Google Scholar 

  • Cox, S. F., Etheridge, M. A., & Hobbs, B. E. (1981). The experimental ductile deformation of polycrystalline and single-crystal pyrite. Economic Geology, 76(8), 2105–2117.

    Article  Google Scholar 

  • Deb, M. (1986). Sulphur and carbon isotope compositions in the stratiform Zn–Pb–Cu sulphide deposits of the Rajpura-Dariba belt, Rajasthan, NW India. Mineralium Deposita, 21, 313–321.

    Article  Google Scholar 

  • Deb, M. (1990). Regional metamorphism of sediment-hosted, conformable base metal sulphide deposits in the Aravalli-Delhi orogenic belt, NW India. In P. Spry & L. Brindzia (Eds.), Regional metamorphism of ore deposits (pp. 117–140). Netherlands: VSP.

    Google Scholar 

  • Deb, M. (1993). The Bhilwara belt of Rajasthan—A probable proterozoic ‘aulacogen’. In S. M. Casshyap (Ed.), Rifted basins and aulacogens (pp. 91–106). Nainital: Gyanodaya Prakashan.

    Google Scholar 

  • Deb, M., & Goodfellow, W. D. (Eds.). (2004). Sediment-hosted lead-zinc sulphide deposits: Attributes and models of some major deposits in India, Australia and Canada. New Delhi: Narosa Publishing House (367pp).

    Google Scholar 

  • Deb, M., & Sarkar, S. C. (1990). Proterozoic tectonic evolution and metallogenesis in the Aravalli- Delhi Orogenic Complex, Northwestern India. Precambrian Research, 46, 115–137.

    Article  Google Scholar 

  • Deb, M., & Sehgal, U. (1997). Petrology, geothermobarometry and C-O-H-S fluid compositions in the environs of Rampura-Agucha Zn-(Pb) ore deposit, Bhilwara district, Rajasthan. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 106(4), 343–356.

    Google Scholar 

  • Deb, M., Thorpe, R. I., Cumming, G. L., & Wagner, P. A. (1989). Age, source and stratigraphic implications of lead isotope data for conformable sediment-hosted base metal deposits in the Proterozoic Aravalli-Delhi orogenic belt, NW India. Precambrian Research, 43, 1–22.

    Article  Google Scholar 

  • Freitag, K., Boyle, A. P., Nelson, E., Hitzman, M., Churchill, J., & Lopez-Pedrosa, M. (2004). The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: Example from the Greens Creek deposit (Alaska). Mineralium Deposita, 39, 103–113.

    Article  Google Scholar 

  • Gouda, H. C., Fareeduddin, Singh, R. K., Rajaram, H., Kumar, R., Kesavan, R., Golani, P. R., et al. (2015). Aeromagnetic anomaly maps of the Aravalli craton and their interpretations: Some new insights on stratigraphy and metallogeny of region. In Recent developments in metallogeny and mineral exploration in Rajasthan. Geological Survey of India, Special Publication,Vol. 101, pp. 1–28.

    Google Scholar 

  • Graf, J. L., Jr., & Skinner, B. J. (1970). Strength and deformation of pyrite and pyrrhotite. Economic Geology, 65, 206–215.

    Article  Google Scholar 

  • Graf, J. L., Skinner, B. J., Bras, J., Fagot, M., Levade, C., & Couderc, J. J. (1981). Transmission electron microscopic observation of plastic deformation in experimentally deformed pyrite. Economic Geology, 76, 738–742.

    Article  Google Scholar 

  • Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, P, B., Sahai, T. N., & Sharma, S. B. (1980). Lithostratigraphic map of Aravalli region, southern Rajasthan and northeastern Gujarat. Geological Survey of India, Special Publication, Hyderabad.

    Google Scholar 

  • Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, B. P., Sahai, T. N., & Sharma, S. B. (1997). The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Memoirs of the Geological Survey of India, 123, 262.

    Google Scholar 

  • Hazarika, P., Upadhyay, D., & Mishra, B. (2013). Contrasting geochronological evolution of the Rajpura–Dariba and Rampura–Agucha metamorphosed Zn–Pb deposit, Aravalli–Delhi Belt, India. Journal of Asian Earth Sciences, 73, 429–439.

    Article  Google Scholar 

  • Heron, A. M. (1953). Geology of Central Rajputana. Memoirs of the Geological Survey of India, 79, 389.

    Google Scholar 

  • Krauskopf, K. B. (1967). Introduction to geochemistry. New York: McGraw Hill (721pp).

    Google Scholar 

  • Kuscu, I., & Erler, A. (2002). Pyrite deformation textures in the deposits of the Kure mining district (Kastamonu–Turkey). Kure Maden Sahasi Yataklarinda Pirit Deformasyon Dokulari (Kastamonu–Turkiye), 11(3), 205–215.

    Google Scholar 

  • Mc Clay, K. R., & Ellis, P. G. (1983). Deformation and recrystallization of pyrite. Mineralogical Magazine, 47, 527–538.

    Article  Google Scholar 

  • Mishra, B., & Berhardt, H. J. (2009). Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura–Agucha massive sulfide deposit, northwestern India. Mineralium Deposita, 44, 183–204.

    Article  Google Scholar 

  • Mookherjee, A. (1971). Deformation of pyrite. Economic Geology, 66, 200.

    Article  Google Scholar 

  • Mukherjee, I. (2013). Pyite-black shale association in varying metamorphic grades in the Precambrian of India: A comparative study of their textural, compositional and deformational characteristics (M.Sc thesis). University of Delhi, 203pp.

    Google Scholar 

  • Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics. Berlin: Springer (366pp).

    Google Scholar 

  • Ramsay, J. G. (1967). Folding and fracturing of rocks. New York: McGraw Hill (568pp).

    Google Scholar 

  • Ray, S. K. (1977). Deformation of pyrite aggregates, Saladipura area, Khetri copper belt, Rajasthan. Indian Journal of Earth Science, 4, 169–182.

    Google Scholar 

  • Roy, A. B., & Jhakar, S. R. (2002). Geology of Rajasthan (Northwest India) Precambrian to recent. Jodhpur: Scientific Publishers (421pp).

    Google Scholar 

  • Sarkar, S. C., & Banerji, S. (2004). Carbonate-hosted lead-zinc deposits of Zawar, Rajasthan in the context of world scenario. In M. Deb & W. D. Goodfellow (Eds.), Sediment-hosted lead-zinc sulphide deposits (pp. 328–349). New Delhi: Narosa Publishing House.

    Google Scholar 

  • Sarkar, S. C., Bhattacharyya, P. K., & Mukherjee, A. D. (1980). Evolution of the sulfide ores of Saladipura, Rajasthan, India. Economic Geology, 75, 1152–1167.

    Article  Google Scholar 

  • Sarkar, S. C., & Deb, M. (1974). Metamorphism of sulfides of the Singhbhum copper belt, India: The evidence from the ore fabric. Economic Geology, 68, 1282–1293.

    Article  Google Scholar 

  • Sinha-Roy, S., Malhotra, G., & Mohanty, M. (1998). Geology of Rajasthan. Bangalore: Geological Society of India (278pp).

    Google Scholar 

  • Stanton, R. L. (1972). Ore Petrology. New York: McGraw-Hill (713pp).

    Google Scholar 

  • Sugden, T., Deb, M., & Windley, B. F. (1990). Tectonic setting of the mineralization in the Proterozoic Aravalli-Delhi orogenic belt, northwest India. In S.M. Naqvi (Ed.), Precambrian continental crust and its economic resources (pp. 367–390). Developments of Precambrian Geology, Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Tiwary, A., Deb, M., & Cook, N. J. (1998). Use of pyrite microfabric as a key to tectono-thermal evolution of massive sulphide deposits—An example from Deri, southern Rajasthan, India. Mineralogical Magazine, 62(2), 197–212.

    Article  Google Scholar 

Download references

Acknowledgements

AC thanks Prof. M. E. A. Mondal for inviting to write a paper in this special volume, and pursuing his request tirelessly. Department of Geology, University of Delhi provided the necessary microscopic facility for study of the samples during the Master’s dissertation of IM. This research work was partially funded by the Faculty RandD Grant (No. RandD/2012/917) from the University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, I., Chattopadhyay, A., Deb, M. (2019). Deformation of Pyrite at Varying Metamorphic Grades in Sediment-Hosted Base Metal Sulphide Deposits of Rajasthan, India. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_10

Download citation

Publish with us

Policies and ethics