Skip to main content

Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Millions of people are suffering today due to bone disease caused by bone injury and trauma. Bone tissue engineering is the interdisciplinary research field of biomaterial and tissue engineering to address these problems for the improvement of better quality of life. Due to several complexity in conventional approach like limited supply of autograft and donor side morbidity in case of allograft, researcher opted for tissue engineering scaffold to counter these problems. Tissue engineering scaffold is design to grow and proliferate bone cell in a three dimensional platform which mimics the extra cellular matrix of bone. Scaffold seeded with mesenchymal stem cells (MSCs) is considered to be a very useful technique in the field of biomedical engineering. The main objective of this chapter is to provide an overall work done so far in this field, with a special focus on the evolution of biomaterials and their characteristics that are specific for biopolymer scaffold based strategies of bone and cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rehm BHA. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8(8):578–92.

    Article  PubMed  CAS  Google Scholar 

  2. Haugh MG, et al. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng A. 2011;17(9–10):1201–8.

    Article  CAS  Google Scholar 

  3. Zhang W, et al. Nucleation sites of calcium phosphate crystals during collagen mineralization. J Am Ceram Soc. 2003;86(6):1052–4.

    Article  CAS  Google Scholar 

  4. Meinel L, et al. Silk based biomaterials to heal critical sized femur defects. Bone. 2006;39(4):922–31.

    Article  PubMed  CAS  Google Scholar 

  5. Zimmermann KA, et al. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C. 2011;31(1):43–9.

    Article  CAS  Google Scholar 

  6. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52(1):443–51.

    Article  PubMed  CAS  Google Scholar 

  7. Sundelacruz S, Kaplan DL. Stem cell-and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. In: Seminars in cell & developmental biology. Berlin: Elsevier; 2009.

    Google Scholar 

  8. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007;28(29):4240–50.

    Article  PubMed  CAS  Google Scholar 

  9. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002;295(5557):1009–14.

    Article  PubMed  CAS  Google Scholar 

  10. Cancedda R, et al. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22(1):81–91.

    Article  PubMed  CAS  Google Scholar 

  11. Discher DE, Janmey P, Wang Y-l. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.

    Article  PubMed  CAS  Google Scholar 

  12. Bruder SP, Fox BS. Tissue engineering of bone: cell based strategies. Clin Orthop Relat Res. 1999;367:S68–83.

    Article  Google Scholar 

  13. Schantz J-T, et al. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng. 2003;9(4, Suppl. 1):127–39.

    Article  Google Scholar 

  14. De Boer R, et al. Rat sciatic nerve repair with a poly-lactic-co-glycolic acid scaffold and nerve growth factor releasing microspheres. Microsurgery. 2011;31(4):293–302.

    Article  PubMed  Google Scholar 

  15. Whitaker M, et al. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol. 2001;53(11):1427–37.

    Article  PubMed  CAS  Google Scholar 

  16. Dankers PY, et al. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat Mater. 2005;4(7):568–74.

    Article  PubMed  CAS  Google Scholar 

  17. Weng J, Wang M, Chen J. Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds. Biomaterials. 2002;23(13):2623–9.

    Article  PubMed  CAS  Google Scholar 

  18. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.

    Article  PubMed  Google Scholar 

  19. Nguyen LH, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012;18(5):363–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Engh GA, Herzwurm PJ, Parks NL. Treatment of major defects of bone with bulk allografts and stemmed components during total knee arthroplasty. J Bone Joint Surg Am. 1997;79(7):1030–9.

    Article  PubMed  CAS  Google Scholar 

  21. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  PubMed  CAS  Google Scholar 

  22. Buckwalter J, Mankin H. Instructional course lectures, the american academy of orthopaedic surgeons-articular cartilage. Part I: tissue design and chondrocyte-matrix interactions*†. J Bone Joint Surg Am. 1997;79(4):600–11.

    Article  Google Scholar 

  23. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl. 3):S131–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop Relat Res. 1978;135:192–217.

    Google Scholar 

  25. Taicher GZ, et al. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem. 2003;377(6):990–1002.

    Article  PubMed  CAS  Google Scholar 

  26. Buckwalter J, et al. Bone biology. J Bone Joint Surg Am. 1995;77(8):1256–75.

    Article  Google Scholar 

  27. Nicolson R, Johal J. Ultrastructure of bone. TechMe Anatomy info.

    Google Scholar 

  28. Baksh D, Song L, Tuan R. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8(3):301–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kern S, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  PubMed  CAS  Google Scholar 

  30. Dani C, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci. 1997;110(11):1279–85.

    PubMed  CAS  Google Scholar 

  31. Alison MR, et al. Cell differentiation: hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.

    Article  PubMed  CAS  Google Scholar 

  32. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kidney disease syndrome, Stem cell therapy, http://www.kidney-symptom.com/stem-cell-therapy.html.

  34. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.

    Article  PubMed  CAS  Google Scholar 

  35. Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2(3):184–99.

    Article  CAS  Google Scholar 

  36. Harley BA, Gibson LJ. In vivo and in vitro applications of collagen-GAG scaffolds. Chem Eng J. 2008;137(1):102–21.

    Article  CAS  Google Scholar 

  37. Yeong W-Y, et al. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22(12):643–52.

    Article  PubMed  CAS  Google Scholar 

  38. Liao CJ, et al. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res. 2002;59(4):676–81.

    Article  PubMed  CAS  Google Scholar 

  39. Harris LD, Kim B-S, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42(3):396–402.

    Article  PubMed  CAS  Google Scholar 

  40. Mooney S. Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform. 2005;6(1):44–56.

    Article  PubMed  CAS  Google Scholar 

  41. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1):1–60.

    Article  PubMed  CAS  Google Scholar 

  42. Lloyd DR, Kinzer KE, Tseng H. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci. 1990;52(3):239–61.

    Article  CAS  Google Scholar 

  43. Hua FJ, Park TG, Lee DS. A facile preparation of highly interconnected macroporous poly (D, L-lactic acid-co-glycolic acid)(PLGA) scaffolds by liquid–liquid phase separation of a PLGA–dioxane–water ternary system. Polymer. 2003;44(6):1911–20.

    Article  CAS  Google Scholar 

  44. Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers. Phys Status Solidi A. 2007;204(6):1830–4.

    Article  CAS  Google Scholar 

  45. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.

    CAS  Google Scholar 

  46. Zeugolis DI, et al. Electro-spinning of pure collagen nano-fibres–just an expensive way to make gelatin? Biomaterials. 2008;29(15):2293–305.

    Article  PubMed  CAS  Google Scholar 

  47. Lee S-J, et al. Development of a scaffold fabrication system using an axiomatic approach. J Micromech Microeng. 2006;17(1):147.

    Article  Google Scholar 

  48. Billiet T, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.

    Article  PubMed  CAS  Google Scholar 

  49. Leong K, Cheah C, Chua C. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24(13):2363–78.

    Article  PubMed  CAS  Google Scholar 

  50. Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20(19):1783–90.

    Article  PubMed  CAS  Google Scholar 

  51. Sin D, et al. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng C. 2010;30(1):78–85.

    Article  CAS  Google Scholar 

  52. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22(7):354–62.

    Article  PubMed  CAS  Google Scholar 

  53. Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27(28):4894–903.

    Article  PubMed  CAS  Google Scholar 

  54. Dupont KM, et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 2012;347(3):575–88.

    Article  PubMed  CAS  Google Scholar 

  55. Venugopal J, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater. 2008;84(1):34–48.

    Article  PubMed  CAS  Google Scholar 

  56. Bundela H, Bajpai A. Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett. 2008;2:201–13.

    Article  CAS  Google Scholar 

  57. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–6.

    Google Scholar 

  58. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am. 2001;83(1 suppl 2):S105–15.

    PubMed  Google Scholar 

  60. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  PubMed  CAS  Google Scholar 

  61. Borden M, et al. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 2002;23(2):551–9.

    Article  PubMed  CAS  Google Scholar 

  62. Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials. 2010;31(7):1596–603.

    Article  PubMed  CAS  Google Scholar 

  63. Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1985;18(5):317–28.

    Article  PubMed  CAS  Google Scholar 

  64. Bledzki A, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24(2):221–74.

    Article  CAS  Google Scholar 

  65. Sanchez C, et al. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15(35–36):3559–92.

    Article  CAS  Google Scholar 

  66. Green AA, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens. 1988;26(1):65–74.

    Article  Google Scholar 

  67. Yoneyama M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang J, Yedlapalli P, Lee JW. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chem Eng Sci. 2009;64(22):4732–6.

    Article  CAS  Google Scholar 

  69. Wang Y, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science. 2005;308(5723):854–7.

    Article  PubMed  CAS  Google Scholar 

  70. Chesnutt BM, et al. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A. 2009;88((2):491–502.

    Article  CAS  Google Scholar 

  71. Chen D-M, Zhao H. Strong lensing probability for testing TeVeS theory. Astrophys J Lett. 2006;650(1):L9.

    Article  Google Scholar 

  72. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.

    Article  PubMed  CAS  Google Scholar 

  73. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Article  PubMed  CAS  Google Scholar 

  74. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.

    Article  CAS  Google Scholar 

  75. Miao X, et al. Porous calcium phosphate ceramics modified with PLGA–bioactive glass. Mater Sci Eng C. 2007;27(2):274–9.

    Article  CAS  Google Scholar 

  76. Balandin AA, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.

    Article  PubMed  CAS  Google Scholar 

  77. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603–21.

    Article  CAS  Google Scholar 

  78. Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Messerli D, et al. Multipiece allograft implant; 2009. Google Patents.

    Google Scholar 

  80. Chen Q, Boccaccini A. Poly (D, L-lactic acid) coated 45S5 Bioglass®-based scaffolds: Processing and characterization. J Biomed Mater Res A. 2006;77(3):445–57.

    Article  PubMed  CAS  Google Scholar 

  81. Misra SK, et al. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules. 2006;7(8):2249–58.

    Article  PubMed  CAS  Google Scholar 

  82. Sánchez-Salcedo S, Nieto A, Vallet-Regí M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J. 2008;137(1):62–71.

    Article  CAS  Google Scholar 

  83. Puértolas J, et al. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate–agarose scaffolds for bone regeneration. Acta Biomater. 2011;7(2):841–7.

    Article  PubMed  CAS  Google Scholar 

  84. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.

    Article  PubMed  CAS  Google Scholar 

  85. Min B-M, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7):1289–97.

    Article  PubMed  CAS  Google Scholar 

  86. Miroiu F, et al. Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater Sci Eng B. 2010;169(1):151–8.

    Article  CAS  Google Scholar 

  87. Bhumiratana S, et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials. 2011;32(11):2812–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Spotnitz WD. Fibrin sealant: past, present, and future: a brief review. World J Surg. 2010;34(4):632–4.

    Article  PubMed  Google Scholar 

  89. Le Guéhennec L, Layrolle P, Daculsi G. A review of bioceramics and fibrin sealant. Eur Cell Mater. 2004;8(13):1–11.

    PubMed  Google Scholar 

  90. Walker-Bone K, et al. Regular review: medical management of osteoarthritis. Br Med J. 2000;321(7266):936.

    Article  CAS  Google Scholar 

  91. Liu H, et al. A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed. 2004;15(1):25–40.

    Article  PubMed  CAS  Google Scholar 

  92. Yodsuwan N, et al. Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In: 1st Fah Luang University international conference, Thailand; 2012.

    Google Scholar 

  93. Lee J-Y, et al. Transforming growth factor (TGF)-β1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Pharm Res. 2004;21(10):1790–6.

    Article  PubMed  CAS  Google Scholar 

  94. Samira J, et al. Cytocompatibility, gene-expression profiling, apoptotic, mechanical and 29Si, 31P solid-state nuclear magnetic resonance studies following treatment with a bioglass-chitosan composite. Biotechnol Lett. 2014;36(12):2571–9.

    Article  PubMed  CAS  Google Scholar 

  95. Huang D, et al. Optical coherence tomography. Science (New York, NY). 1991;254(5035):1178.

    Article  CAS  Google Scholar 

  96. Mohammadi Y, et al. Nanofibrous poly (epsilon-caprolactone)/poly (vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif Organs. 2007;30(3):204.

    Article  PubMed  CAS  Google Scholar 

  97. Liu X, et al. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. J Microencapsul. 2002;19(6):775–82.

    Article  PubMed  CAS  Google Scholar 

  98. Kim I-Y, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1–21.

    Article  PubMed  CAS  Google Scholar 

  99. Saravanan S, et al. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011;49(2):188–93.

    Article  PubMed  CAS  Google Scholar 

  100. Chronopoulou L, et al. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surf B: Biointerfaces. 2013;103:310–7.

    Article  PubMed  CAS  Google Scholar 

  101. Mohammadi Y, et al. Osteogenic differentiation of mesenchymal stem cells on novel three-dimensional poly (L-Lactic Acid)/Chitosan/Gelatin/Beta-Tricalcium phosphate hybrid scaffolds. Iran Polym J. 2007;16(1):57.

    CAS  Google Scholar 

  102. Wang Z, Qin T-W. Review: vitreous cryopreservation of tissue-engineered compositions for tissue repair. J Med Biol Eng. 2013;33(2):125–32.

    Article  Google Scholar 

  103. Yeo JH, et al. The effects of Pva/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol Pharm Bull. 2000;23(10):1220–3.

    Article  PubMed  CAS  Google Scholar 

  104. Wang M. Bioactive calcium phosphates and nanocomposite scaffolds for bone tissue engineering. Ceram Trans. 2010;218:175–83.

    Google Scholar 

  105. Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23(24):4811–8.

    Article  PubMed  CAS  Google Scholar 

  106. Li X, et al. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials. 2006;27(9):1917–23.

    Article  PubMed  CAS  Google Scholar 

  107. Spilker M, et al. The effects of collagen-based implants on early healing of the adult rat spinal cord. Tissue Eng. 1997;3(3):309–17.

    Article  CAS  Google Scholar 

  108. Weadock KS, et al. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29(11):1373–9.

    Article  PubMed  CAS  Google Scholar 

  109. Lahav J, Schwartz MA, Hynes RO. Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with fibronectin and collagen. Cell. 1982;31(1):253–62.

    Article  PubMed  CAS  Google Scholar 

  110. Reiser K, McCormick R, Rucker R. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J. 1992;6(7):2439–49.

    Article  PubMed  CAS  Google Scholar 

  111. Chang CH, et al. Cartilage tissue engineering on the surface of a novel gelatin–calcium-phosphate biphasic scaffold in a double-chamber bioreactor. J Biomed Mater Res B Appl Biomater. 2004;71(2):313–21.

    Article  PubMed  CAS  Google Scholar 

  112. Schonauer C, et al. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13(1):S89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li M, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26(30):5999–6008.

    Article  PubMed  CAS  Google Scholar 

  114. Sawyer A, et al. The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials. 2009;30(13):2479–88.

    Article  PubMed  CAS  Google Scholar 

  115. Habraken W, Wolke J, Jansen J. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4):234–48.

    Article  PubMed  CAS  Google Scholar 

  116. Ko C-C, et al. Mechanical properties and cytocompatibility of biomimetic hydroxyapatite-gelatin nanocomposites. J Mater Res. 2006;21(12):3090–8.

    Article  CAS  Google Scholar 

  117. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354:S32–4.

    Article  Google Scholar 

  118. Mohamed KR, Beherei HH, El-Rashidy ZM. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J Adv Res. 2014;5(2):201–8.

    Article  PubMed  CAS  Google Scholar 

  119. Li J, et al. Surface characterization and biocompatibility of micro-and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng C. 2009;29(4):1207–15.

    Article  CAS  Google Scholar 

  120. Choi YS, et al. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials. 1999;20(5):409–17.

    Article  PubMed  CAS  Google Scholar 

  121. Li J, et al. Effect of nano-and micro-hydroxyapatite/chitosan-gelatin network film on human gastric cancer cells. Mater Lett. 2008;62(17):3220–3.

    Article  CAS  Google Scholar 

  122. Sharma S, et al. Bone healing performance of electrophoretically deposited apatite–wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med. 2009;3(7):501–11.

    Article  PubMed  CAS  Google Scholar 

  123. Liotta L, et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980;284(5751):67–8.

    Article  PubMed  CAS  Google Scholar 

  124. Pals D, Hermans J. Sodium salts of pectin and of carboxy methyl cellulose in aqueous sodium chloride. I. Viscosities. Recueil des Travaux Chimiques des Pays-Bas. 1952;71(5):433–57.

    Article  CAS  Google Scholar 

  125. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials. 1999;20(9):859–77.

    Article  PubMed  CAS  Google Scholar 

  126. Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.

    Article  CAS  Google Scholar 

  127. Willats WG, et al. Pectin: cell biology and prospects for functional analysis. In: Plant cell walls. Berlin: Springer; 2001. p. 9–27.

    Chapter  Google Scholar 

  128. Uragami T, et al. Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions. J Membr Sci. 1994;88(2):243–51.

    Article  CAS  Google Scholar 

  129. Rezwan K, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  PubMed  CAS  Google Scholar 

  130. Ghasemi-Mobarakeh L, et al. Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–9.

    Article  PubMed  CAS  Google Scholar 

  131. Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol. 2003;63(16):2417–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maji, K. (2018). Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_17

Download citation

Publish with us

Policies and ethics