Skip to main content

Water Motion and Sugar Translocation in Leaves

  • Chapter
  • First Online:
Plant Biomechanics

Abstract

We give an overview of the current understanding of the coupled water—and sugar flows in plants with special emphasis on the leaves. We introduce the Münch mechanism and discuss the particularities of osmotically driven flow in the phloem and the consequences for the allometry of the vasculature. This is first done in the context of the entire tree, where we discuss the optimum radius for the phloem tubes, and later for a single needle, where we give a more detailed solution of the osmotic flow profile, allowing us to understand the constraints on needle sizes. We then discuss recent results from microscopy of cross sections along the midvein of a birch leaf, allowing us to measure how the number and radius of the sieve elements depend on the distance from the petiole and compare this to the available area and the minor vein endings in the entire leaf. We finally discuss the pre-phloem water flow in the leaf, i.e. the coupled water/sugar transport from the mesophyll via the bundle sheath into the sieve tubes. We review the distinct sugar loading mechanisms with special emphasis on active symplasmic loading (‘polymer trapping’), where one needs to compute water and sugar flow through extremely narrow channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bi Z, Merl-Pham J, Uehlein N, Zimmer I, Mühlhans S, Aichler M, Walch AK, Kaldenhoff R, Palme K, Schnitzler J-P, Block K (2015) RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology. J Proteomics 128:321–332

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MR, Turgeon R, Owens T, Niklas KJ (2017a) The hydraulic architecture of ginkgo leaves. Am J Bot 104(9):1285–1298

    Article  PubMed  Google Scholar 

  • Carvalho MR, Turgeon R, Owens T, Niklas KJ (2017b) The scaling of the hydraulic architecture in poplar leaves. New Phytol 214:145–157

    Article  CAS  PubMed  Google Scholar 

  • Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by sweet proteins as a key step for phloem transport. Science 335(6065):207–211

    Article  CAS  PubMed  Google Scholar 

  • Comtet J, Turgeon R, Stroock AD (2017) Phloem loading through plasmodesmata: a biophysical analysis. Plant Physiol 175(2):904–915

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dechadilok P, Deen WM (2006) Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res 45(21):6953–6959

    Article  CAS  Google Scholar 

  • Dölger J, Rademaker H, Liesche J, Schulz A, Bohr Tomas (2014) Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants. Phys Rev E 90(4):042704

    Article  CAS  Google Scholar 

  • Fisher DB, Gifford RM (1986) Accumulation and conversion of sugars by developing wheat grains vi. gradients along the transport pathway from the peduncle to the endosperm cavity during grain filling. Plant Physiol 82(4):1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KH, Berg-Sørensen K, Bruus H, Holbrook NM, Liesche J, Schulz A, Zwieniecki MA, Bohr T (2016) Sap flow and sugar transport in plants. Rev Mod Phys 88:035007 (1–63)

    Google Scholar 

  • Jensen KH, Lee J, Bohr T, Bruus H, Holbrook NM, Zwieniecki MA (2011) Optimality of the Münch mechanism for translocation of sugars in plants. J R Soc Interface 8(61):1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KH, Berg-Sørensen K, Friis SMM, Bohr T (2012a) Analytic solutions and universal properties of sugar loading models in münch phloem flow. J Theor Biol 304:286–296

    Article  CAS  PubMed  Google Scholar 

  • Jensen KH, Liesche J, Bohr T, Schulz A (2012b) Universality of phloem transport in seed plants. Plant Cell Environ 35:1065–1076

    Article  CAS  PubMed  Google Scholar 

  • Jensen KH, Mullendore DL, Holbrook NM, Bohr T, Knoblauch M, Bruus H (2012c) Modeling the hydrodynamics of phloem sieve plates. Front Plant Sci 3

    Google Scholar 

  • Jensen KH, Zwieniecki MA (2013) Physical limits to leaf size in tall trees. Phys Rev Lett 110(1)

    Google Scholar 

  • Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. BBA—Biochim Et Biophys Acta 27:229–246

    Article  CAS  Google Scholar 

  • Knoblauch M, Knoblauch J, Mullendore DL, Savage JA, Babst BA, Beecher SD, Dodgen AC, Jensen KH, Holbrook NM (2016) Testing the Munch hypothesis of long distance phloem transport in plants. Elife 5

    Google Scholar 

  • Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13(3):287–297

    Article  CAS  Google Scholar 

  • Landsberg JJ, Fowkes ND (1978) Water movements through plant roots. Ann Bot 42:493–508

    Article  Google Scholar 

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248(1):181–190

    Article  CAS  PubMed  Google Scholar 

  • Liesche J, Windt C, Bohr T, Schulz A, Jensen KH (2015) Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance. Tree Physiol (in press)

    Google Scholar 

  • Lu SY, Zhao HY, Des Marais DL, Parsons EP, Wen XX, Xu XJ, Bangarusamy DK, Wang GC, Rowland O, Juenger T, Bressan RA, Jenks MA (2012) Arabidopsis eceriferum9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens HJ (2017) Private correspondence

    Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of plant form and process. University of Chicago Press

    Google Scholar 

  • Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, Pasolli HA, Harvey K, Hess HF, Betzig E, Blackstone C, Lippincott-Schwartz J (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928–1–12

    Article  CAS  PubMed  Google Scholar 

  • Rademaker H (2016) Microfluidics of sugar transport in plant leaves and in biomimetic devices. PhD thesis, Technical University of Denmark

    Google Scholar 

  • Rademaker H, Jensen KH, Bohr T (2016) Osmotically driven flows and maximal transport rates in systems of long, linear porous pipes. arXiv:1610.09175

  • Rademaker H, Zwieniecki MA, Bohr T, Jensen KH (2017) Sugar export limits size of conifer needles. Phys Rev E 95:042402

    Article  PubMed  Google Scholar 

  • Ronellenfitsch H, Liesche J, Jensen Kaare H, Holbrook NM, Schulz A, Katifori E (2015) Scaling of phloem structure and optimality of photoassimilate transport in conifer needles. In: Proceedings of the royal society of london B: biological sciences, vol 282(1801)

    Article  PubMed  Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581(12):2309–2317

    Article  CAS  PubMed  Google Scholar 

  • Schmitz K, Cuypers B, Moll M (1987) Pathway of assimilate transfer between mesophyll-cells and minor veins in leaves. Cucumis melo L. Planta 171(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Schulz A (2015) Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates. J Plant Res 128(1):49–61

    Article  CAS  PubMed  Google Scholar 

  • Tadrist L, Darbois-Texier B (2016) Are leaves optimally designed for self-support? an investigation on giant monocots. J Theor Biol 396:125–131

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem. Cucumis Melo L and Cucurbita pepo L Planta 199(3):425–432

    Google Scholar 

  • Waigmann E, Turner A, Peart J, Roberts K, Zambryski P (1997) Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta (Heidelberg) 203(1):75–84

    Article  CAS  Google Scholar 

  • Zeuthen T, Gorraitz E, Her K, Wright EM, Loo DDF (2016) Structural and functional significance of water permeation through cotransporters. Proc Nat Acad Sci (USA) 113(44):E6887–E6894

    Article  CAS  Google Scholar 

  • Zeuthen T, MacAulay N (2012) Transport of water against its concentration gradient: fact or fiction? WIREs membr transp signal 2012. https://doi.org/10.1002/wmts.54

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Bohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bohr, T., Rademaker, H., Schulz, A. (2018). Water Motion and Sugar Translocation in Leaves. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_16

Download citation

Publish with us

Policies and ethics