Skip to main content

Basics of Vehicle Dynamics, Vehicle Models

  • Chapter
  • First Online:
Vehicle Dynamics of Modern Passenger Cars

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 582))

Abstract

For the understanding and knowledge of the dynamic behaviour of passenger cars it is essential to use simple mechanical models as a first step. With such kind of models overall characteristic properties of the vehicle motion can be investigated. For cornering, a planar two-wheel model helps to explain understeer–oversteer, stability and steering response, and influences of an additional rear wheel steering. Another planar model is introduced for investigating straight ahead acceleration and braking. To study ride comfort, a third planar model is introduced. Consequently, in these basic models, lateral, vertical and longitudinal dynamics are separated. To gain insight into e.g. tyre–road contact or coupled car body heave, pitch and roll motion, a 3D-model needs to be introduced, taking into account nonlinearities. Especially the nonlinear approximation of the tyre forces allows an evaluation of the four tyre–road contact conditions separately—shown by a simulation of a braking during cornering manoeuvre. A near reality vehicle model (NRVM) comprises a detailed 3D description of the vehicle and its parts, e.g. the tyres and suspensions for analysing ride properties on an arbitrary road surface. The vehicle model itself is a composition of its components, described by detailed sub-models. For the simulation of the vehicle motion, a multi-body-system (MBS)-software is necessary. The shown fundamental structure of the equations of motion allows to connect system parts by kinematic restrictions as well, using closed loop formulations. A NRVM also offers the possibility for approving a theoretical layout of control systems, generally by using one of the simple vehicle models as observer and/or part of the system. An example demonstrates the possibility of additional steering and/or yaw moment control by differential braking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, M. (2009). Vehicle handling dynamics (2nd ed.). Elsevier.

    Google Scholar 

  • Bub , W., & Lugner, P. (1992). Systematik der ModellbildungTeil 1: Konzeptionelle Modellbildung, Teil 2: Verifikation und Validation., VDI Berichte Nr. 295.

    Google Scholar 

  • Chan, C. C. (2007). The state of the art of electric hybrid and fuel cell vehicles. Proceedings of the IEEE, 95(4).

    Google Scholar 

  • DIN ISO 8855 (2013). Straßenfahrzeuge – Fahrdynamik und Fahrverhalten – Begriffe.

    Google Scholar 

  • Edelmann, J., Plöchl, M., Lugner, P., Mack, W., & Falkner, A. (2008). Investigations on the power slide of automobiles. In Proceedings of AVEC’08.

    Google Scholar 

  • Galvagno, E., Morina, D., Sorniotti, A., & Velardocchia, M. (2013). Drivability analysis of through-the-road-parallel hybrid vehicles. Meccanica, 48, 351–366.

    Google Scholar 

  • Gruber, P., & Sharp, R. S. (2015). In Proceedings of the 4th International Tyre Colloquium: Tyre Models for Vehicle Dynamics Analysis, April, 20–21, 2015. University of Surrey, Guildford, United Kingdom.

    Google Scholar 

  • Heinzl, P., Lugner, P., & Plöchl, M. (2002). Stability control of a passenger car by combined additional steering and unilateral braking. Vehicle System Dynamics Supplement, 37.

    Google Scholar 

  • Hrovat, D., Tseng, E., Fodor, M., & Asgari, J. (2014). Active and semiactive suspension systems. In G. Mastinu & M. Plöchl (Eds.), Handbook road and off-road vehicle dynamics. CRC Press.

    Google Scholar 

  • Kortüm, W., & Lugner, P. (1994). Systemdynamik und Regelung von Fahrzeugen. Springer.

    Google Scholar 

  • Lugner, P., Mittermayr, P., & Endlicher, K. O. (1988). Theoretical investigations on the behaviour of a car with additional four-wheel steering at  \(\mu \)-split conditions C440/88. IMechE.

    Google Scholar 

  • Lugner, P. (2007). Tyre models, propulsion and handling of road vehicles. In W. Schielen (Ed.), Dynamical analysis of vehicle systems: CISM courses and lectures (Vol. 497). Springer.

    Google Scholar 

  • Mitschke, M., & Wallentowitz, H. (2014). Dynamik der Kraftfahrzeuge (5th Auflage). Springer.

    Google Scholar 

  • Oertel, C. H., Eichler, M., & Faudr, A. (1998). RMOD-K Version 5.2, Manual. CA Entwicklung, gedas GmbH.

    Google Scholar 

  • Pacejka, H. B. (2014). Tire as a vehicle component. In G. Mastinu & M. Plöchl (Eds.), Handbook road and off-road vehicle dynamics. CRC Press.

    Google Scholar 

  • Plöchl, M. (1995). Zusammenwirken von allradgelenktem Fahrzeug und Fahrer in kritischen Fahrsituationen, Dissertation, TU Wien.

    Google Scholar 

  • Plöchl, M., Lugner, P., & Edelmann, J. (2014). Basics of longitudinal and lateral vehicle dynamics. In G. Mastinu & M. Plöchl (Eds.), Handbook road and off-road vehicle dynamics. CRC Press.

    Google Scholar 

  • Plöchl, M., Endlicher, K.-O., & Lugner, P. (2015). Grundlagen der Fahrzeugdynamik, Teil 1. Skriptum: Institut für Mechanik, TU Wien.

    Google Scholar 

  • Popp, K., & Schiehlen, W. (2010) Ground vehicle dynamics. Springer.

    Google Scholar 

  • Popp, K. (2014). Ride comfort and road holding. In G. Mastinu & M. Plöchl (Eds.), Handbook road and off-road vehicle dynamics. CRC Press.

    Google Scholar 

  • Rill, G. (2012). Road vehicle dynamics: Fundamentals and modeling. CRC Press.

    Google Scholar 

  • van Zanten, A., Erhardt, R., & Pfaff, G. (1994). FDR—Die Fahrdynamikregelung von Bosch ATZ96.

    Google Scholar 

  • Zhao, L. et al. (2017). An analytical formula of driver RMS acceleration response for quater-car considering cushion effects. Vehicle System Dynamics, 55(9). Taylor & Francis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lugner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lugner, P., Edelmann, J. (2019). Basics of Vehicle Dynamics, Vehicle Models. In: Lugner, P. (eds) Vehicle Dynamics of Modern Passenger Cars. CISM International Centre for Mechanical Sciences, vol 582. Springer, Cham. https://doi.org/10.1007/978-3-319-79008-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79008-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79007-7

  • Online ISBN: 978-3-319-79008-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics