Skip to main content

Mathematical Models Applied in the Design of a Flight Simulator for Military Training

  • Conference paper
  • First Online:
Developments and Advances in Defense and Security (MICRADS 2018)

Abstract

The current study presents mathematical models of an aircraft, which has been considered as a mass subjected to different forces, performed in classical physics. The main objective is to design algorithms, used to simulate the flight of an aircraft and to create an interactive simulator based on mathematical models. For this purpose, the different forces that the mass of the aircraft has been subjected to in the air have been analyzed and interpreted numerically, in order to generate a mathematical model that makes it possible to reproduce the flight of an airplane within a simulation software developed with Unity. Finally, the performance of the algorithms within Unity’s game engine has been evaluated, before and after using threads in order to be able to conduct communication and evaluate the data transmission analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allerton, D.: Principles of Flight Simulation, 1st edn. Wiley (2009). ISBN: 0470754362

    Google Scholar 

  2. Stevens, B., Lewis, F., Johnson, E.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, 3rd edn. Wiley-Blackwell (2015). ISBN: 1118870980

    Google Scholar 

  3. Alexandrov, V.V., Bolotin, Y., Lemak, S.S., Parusnikov, N.A., Zlochevsky, S.I., Guerrero, S.W.F.: Introduction to Control of Dynamic Systems, p. 239. Ediciones BUAP (2009). ISBN: 978-607-487-095-4

    Google Scholar 

  4. Matlalcuatzi, E., Alexandrov, V.V., Matlalcuatzi, F., Altamirano, L., Reyes, M., Moctezuma, J., Hernandez, O.: Diseño del simulador dinámico para pilotos como un sistema biomecatrónico. In: Memorias del XVI Congreso Latinoamericano de Control Automático, CLCA 2014, 14–17 Octubre 2014, Cancún (2014)

    Google Scholar 

  5. Rekdalsbakken, W.: Design and application of a motion platform in three degrees of freedom. In: Proceedings of the 46th Conference on Simulation and Modelling (SIMS 2005), pp. 269–279, Tapir Academic Press (2005). NO-7005 TRONDHEIM

    Google Scholar 

  6. Rekdalsbakken, W.: Design and application of a motion platform for a high-speed craft simulator. In: IEEE 3rd International Conference on Mechatronics (ICM 2006) (2006). https://doi.org/10.1109/icmech.2006.252493

  7. Henson, R.: Unity 4.x Game Development by Example Beginner’s Guide. Packt Publishing (2013). ISBN: 1849695261

    Google Scholar 

  8. Patrick, F.: Unity from Proficiency to Mastery (C# Programming): Master C# with Unity. Amazon Digital Services LLC (2017). ASIN: B076ZQHKQT

    Google Scholar 

  9. Villacís, C., Fuertes, W., Bustamante, A., Almachi, D., Prócel, C., Fuertes, S., Toulkeridis, T.: Multi-player educational video game over cloud to stimulate logical reasoning of children. In: IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications. https://doi.org/10.1109/ds-rt.2014.24

  10. Merk, R.J., Roessingh, J.J.M.: Assessing behaviour of cognitive agents in a flight simulator with fighter pilots. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE (2016)

    Google Scholar 

  11. Boril, J., Leuchter, J., Smrz, V., Blasch, E.: Aviation simulation training in the Czech air force. In: IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), p. 9A2-1. IEEE, September 2015

    Google Scholar 

  12. Cen, F., Li, Q., Fan, L., Liu, Z., Sun, H.: Development of a pilot-in-loop real-time simulation platform for wind tunnel free-flight test. In: IEEE International Conference on Information and Automation, pp. 2433–2438. IEEE, August 2015

    Google Scholar 

  13. Louali, R., Belloula, A., Djouadi, M.S., Bouaziz, S.: Real-time characterization of Microsoft flight simulator 2004 for integration into hardware in the loop architecture. In: 19th Mediterranean Conference on Control & Automation (MED), pp. 1241–1246. IEEE, June 2011

    Google Scholar 

  14. Mauro, S., Gastaldi, L., Pastorelli, S., Sorli, M.: Dynamic flight simulation with a 3DOF parallel platform. Int. J. Appl. Eng. Res. 11(18), 9436–9442 (2016)

    Google Scholar 

  15. Cheon, S.-H., Ha, S.-W., Moon, Y.-H.: Hardware-in-the-loop simulation platform for image-based object tracking method using small UAV. In: IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE (2016)

    Google Scholar 

  16. Wu, L.-N., Sun, Y.-P.: Development of a low-cost flight simulation training device for research and education. In: Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013). Springer (2014)

    Google Scholar 

  17. Munzinger, C., Anthony, J.C., Prasad, J.V.R.: Development of a real-time flight simulator for an experimental model helicopter (1998)

    Google Scholar 

  18. Chen, J.: Helicopter real-time flight simulation environment development and digital signal processor applications (2006)

    Google Scholar 

  19. Liu, D.-N., Hou, Z.-X., Gao, X.-Z.: Flight modeling and simulation for dynamic soaring with small unmanned air vehicles. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231(4), 589–605 (2017)

    Article  Google Scholar 

  20. Setiawan, J.D., Setiawan, Y.D., Ariyanto, M., Mukhtar, A., Budiyono, A.: Development of real-time flight simulator for quadrotor. In: International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 59–64. IEEE, December 2012

    Google Scholar 

  21. Hays, R.T., et al.: Flight simulator training effectiveness: a meta-analysis, p. 63 (1992)

    Google Scholar 

  22. Lofaro, R.J., Smith, K.M.: The aviation operational environment: integrating a decision-making paradigm, flight simulator training and an automated cockpit display for aviation safety. In: Technology Engineering and Management in Aviation: Advancements and Discoveries, pp. 241–282. IGI Global (2012)

    Google Scholar 

  23. Gervais, C., Chaudron, J.B., Siron, P., Leconte, R., Saussié, D.: Real-time distributed aircraft simulation through HLA. In: IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp. 251–254. IEEE, October 2012

    Google Scholar 

  24. Chaudron, J.B., Saussié, D., Siron, P., Adelantado, M.: Real-time distributed simulations in an HLA framework: application to aircraft simulation. Simulation 90(6), 627–643 (2014)

    Article  Google Scholar 

  25. Lorains, M., MacMahon, C., Ball, K., Mahoney, J.: Above real time training for team invasion sport skills. Int. J. Sports Sci. Coach. 6(4), 537–544 (2011)

    Article  Google Scholar 

  26. Scamps, A., Gibbens, P.: Development of a flight simulator evaluation course at QANTAS. In: AIAA Modeling and Simulation Technologies Conference and Exhibit (2005)

    Google Scholar 

  27. Khan, A.H., Khan, Z.H., Khan, S.H.: Optimized reconfigurable autopilot design for an aerospace CPS. In: Computational Intelligence for Decision Support in Cyber-Physical Systems, pp. 381–420. Springer Singapore (2014)

    Google Scholar 

  28. Motes, A.: Physics of Flight: An Introduction. AM Photonics, 3rd edn. (2016). ASIN: B01AIPUIU8

    Google Scholar 

  29. Vepa, R.: Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft, 1st edn. CRC Press (2014). ASIN: B00MOU4S66

    Google Scholar 

  30. Raol, J.R.: Flight Mechanics Modeling and Analysis, 1st edn. CRC Press (2008). ASIN: B005H6YDUK

    Google Scholar 

  31. Roud, O., Bruckert, D.: Cessna 172SP Training Manual. CreateSpace Independent Publishing Platform (2017). ISBN-10: 1519617070

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Fuertes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villacís, C. et al. (2018). Mathematical Models Applied in the Design of a Flight Simulator for Military Training. In: Rocha, Á., Guarda, T. (eds) Developments and Advances in Defense and Security. MICRADS 2018. Smart Innovation, Systems and Technologies, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-78605-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78605-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78604-9

  • Online ISBN: 978-3-319-78605-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics