Skip to main content

Some (in)tractable Parameterizations of Coloring and List-Coloring

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10823))

Included in the following conference series:

Abstract

Graph Coloring and its generalization list coloring are fundamental graph optimization problems with various applications. Most versions of the problems are hard in several paradigms including approximation and parameterized complexity. We consider a few versions of the problems that are polynomial time solvable, and try to extend the notion of feasible algorithms by parameterizing suitably in the paradigm of parameterized complexity. More specifically,

  • It is known that given a planar graph with any list of size 5 for each vertex, there is a proper coloring of the graph such that each vertex gets its color from its list. We show that if the graph is k vertices away from a planar graph, then deciding whether such a coloring exists is para-NP-hard when parameterized by k, i.e. it is NP-hard for even constant values of k. It is known that any graph with maximum degree 3 is 3-colorable unless the graph is a 4-clique. We show that if the graph is k vertices away from a maximum degree 3 graph, then determining whether it is 3-colorable is para-NP-hard when parameterized by k.

  • It is known that if each vertex has a list of size 2, then the list coloring which asks whether there is a coloring respecting the lists is polynomial time solvable. We show that if only k vertices have lists of size more than 2, then the problem becomes W[1]-hard.

  • It is known that determining whether a graph on n vertices is \(n-k\) colorable, is fixed-parameter tractable on k. We consider the list coloring variation of it where each vertex has a list of size \(n-k\) and we ask whether the graph has a coloring respecting the lists of colors. We show that the problem has an XP algorithm, i.e. an algorithm with runtime \(n^{O(k)}\). At least this shows that the problem cannot be para-NP-hard unless \(P =NP\). We leave open the question whether the problem is fixed-parameter tractable.

  • Finally, it is known that \(2-\) List coloring is polynomial time solvable. If there is no such coloring, then we address the following natural question: are there k vertices or edges whose removal results in a feasible coloring. We show that these versions are fixed-parameter tractable when parameterized by k. These generalize the odd cycle transversal problem and edge-bipartization problem which are well-studied problems particularly in parameterized complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chudnovsky, M.: Coloring graphs with forbidden induced subgraphs. Proc. ICM 4, 291–302 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  5. Dabrowski, K.K., Dross, F., Johnson, M., Paulusma, D.: Filling the complexity gaps for colouring planar and bounded degree graphs. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 100–111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29516-9_9

    Chapter  Google Scholar 

  6. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Math. 30(3), 289–293 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hopcroft, J.E., Karp, R.M.: An n\({}^{\text{5/2 }}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)

    Article  MathSciNet  Google Scholar 

  11. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler parameterized algorithm for OCT. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 380–384. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10217-2_37

    Chapter  Google Scholar 

  12. Paulusma, D.: Open problems on graph coloring for special graph classes. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 16–30. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_2

    Chapter  Google Scholar 

  13. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thomassen, C.: Every planar graph is 5-choosable. J. Comb. Theory Ser. B 62(1), 180–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wernicke, S.: On the algorithmic tractability of single nucleotide polymorphism (SNP) analysis and related problems. Ph.D. thesis. Universität Tübingen, Tübingen (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Paliwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arora, P., Banik, A., Paliwal, V.K., Raman, V. (2018). Some (in)tractable Parameterizations of Coloring and List-Coloring. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics