Skip to main content

Depth-Adaptive Computational Policies for Efficient Visual Tracking

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

Abstract

Current convolutional neural networks algorithms for video object tracking spend the same amount of computation for each object and video frame [3]. However, it is harder to track an object in some frames than others, due to the varying amount of clutter, scene complexity, amount of motion, and object’s distinctiveness against its background. We propose a depth-adaptive convolutional siamese network that performs video tracking adaptively at multiple neural network depths. Parametric gating functions are trained to control the depth of the convolutional feature extractor by minimizing a joint loss of computational cost and tracking error. Our network achieves accuracy comparable to the state-of-the-art on the VOT2016 benchmark. Furthermore, our adaptive depth computation achieves higher accuracy for a given computational cost than traditional fixed-structure neural networks. The presented framework extends to other tasks that use convolutional neural networks and enables trading speed for accuracy at runtime.

C. Ying—Work done as student at the Machine Learning Department, CMU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems. Software: tensorflow.org (2015)

  2. Bengio, E., Bacon, P., Pineau, J., Precup, D.: Conditional computation in neural networks for faster models. CoRR, abs/1511.06297 (2015)

    Google Scholar 

  3. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  4. Figurnov, M., Collins, M.D., Zhu, Y., Zhang, L., Huang, J., Vetrov, D.P., Salakhutdinov, R.: Spatially adaptive computation time for residual networks. In: CVPR (2017)

    Google Scholar 

  5. Graves, A.: Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983 (2016)

    Google Scholar 

  6. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR, abs/1410.5401 (2014)

    Google Scholar 

  7. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: ICML, pp. 1462–1471 (2015)

    Google Scholar 

  8. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. CoRR, abs/1412.6622 (2014)

    Google Scholar 

  9. Koch, G.: Siamese neural networks for one-shot image recognition. Ph.D. thesis, University of Toronto (2015)

    Google Scholar 

  10. Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_54

    Chapter  Google Scholar 

  11. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G., Vojir, T., Hager, G., Nebehay, G., Pflugfelder, R.: The visual object tracking VOT2015 challenge results. In: ICCV, pp. 1–23 (2015)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency trade-offs by selective execution. arXiv:1701.00299 (2017)

  14. Ma, C., Huang, J.-B., Yang, X., Yang, M.-H.: Hierarchical convolutional features for visual tracking. In: ICCV, pp. 3074–3082 (2015)

    Google Scholar 

  15. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)

  16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q.V., Hinton, G.E., Dean, J.: Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. CoRR, abs/1701.06538 (2017)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  20. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3119–3127, December 2015

    Google Scholar 

  21. Wang, N., Yeung, D.-Y.: Learning a deep compact image representation for visual tracking. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.), Advances in Neural Information Processing Systems, vol. 26, pp. 809–817 (2013)

    Google Scholar 

  22. Weng, S.-K., Kuo, C.-M., Tu, S.-K.: Video object tracking using adaptive kalman filter. J. Vis. Commun. Image Represent. 17(6), 1190–1208 (2006)

    Article  Google Scholar 

  23. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    MATH  Google Scholar 

  24. Xie, S., Tu, Z.: Holistically-nested edge detection. CoRR, abs/1504.06375 (2015)

    Google Scholar 

  25. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv:1611.01578 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris Ying or Katerina Fragkiadaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, C., Fragkiadaki, K. (2018). Depth-Adaptive Computational Policies for Efficient Visual Tracking. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics