Skip to main content

Structured Output Prediction and Learning for Deep Monocular 3D Human Pose Estimation

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

In this work we address the problem of estimating 3D human pose from a single RGB image by blending a feed-forward CNN with a graphical model that couples the 3D positions of parts. The CNN populates a volumetric output space that represents the possible positions of 3D human joints, and also regresses the estimated displacements between pairs of parts. These constitute the ‘unary’ and ‘pairwise’ terms of the energy of a graphical model that resides in a 3D label space and delivers an optimal 3D pose configuration at its output. The CNN is trained on the 3D human pose dataset 3.6M, the graphical model is trained jointly with the CNN in an end-to-end manner, allowing us to exploit both the discriminative power of CNNs and the top-down information pertaining to human pose. We introduce (a) memory efficient methods for getting accurate voxel estimates for parts by blending quantization with regression (b) employ efficient structured prediction algorithms for 3D pose estimation using branch-and-bound and (c) develop a framework for qualitative and quantitative comparison of competing graphical models. We evaluate our work on the Human3.6M dataset, demonstrating that exploiting the structure of the human pose in 3D yields systematic gains.

S. Kinauer and R. A. Guler have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  2. Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V., Schiele, B.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4929–4937 (2016)

    Google Scholar 

  3. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. arXiv preprint arXiv:1611.08050 (2016)

  5. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  6. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)

    Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. arXiv preprint arXiv:1703.06870 (2017)

  8. Tome, D., Russell, C., Agapito, L.: Lifting from the deep: convolutional 3D pose estimation from a single image. arXiv preprint arXiv:1701.00295 (2017)

  9. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. arXiv preprint arXiv:1612.06524 (2016)

  10. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  11. Mehta, D., Rhodin, H., Casas, D., Sotnychenko, O., Xu, W., Theobalt, C.: Monocular 3D human pose estimation in the wild using improved CNN supervision. arXiv preprint arXiv:1611.09813v3 (2017)

  12. Guler, A., et al.: Human joint angle estimation and gesture recognition for assistive robotic vision. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 415–431. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_29

    Chapter  Google Scholar 

  13. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. arXiv preprint arXiv:1611.07828 (2016)

  14. Burenius, M., Sullivan, J., Carlsson, S.: 3D pictorial structures for multiple view articulated pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3618–3625 (2013)

    Google Scholar 

  15. Tekin, B., Márquez-Neila, P., Salzmann, M., Fua, P.: Fusing 2D uncertainty and 3D cues for monocular body pose estimation. arXiv preprint arXiv:1611.05708 (2016)

  16. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3D human pose with deep neural networks. CoRR abs/1605.05180 (2016)

    Google Scholar 

  17. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: NIPS (2014)

    Google Scholar 

  18. Yang, W., Ouyang, W., Li, H., Wang, X.: End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3073–3082 (2016)

    Google Scholar 

  19. Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2015)

    Google Scholar 

  20. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  22. Guler, R.A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I.: DenseReg: fully convolutional dense shape regression in-the-wild. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  23. Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C., Murphy, K.P.: Towards accurate multi-person pose estimation in the wild. CoRR abs/1701.01779 (2017)

    Google Scholar 

  24. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  25. Chen, X., Yuille, A.L.: Articulated pose estimation by a graphical model with image dependent pairwise relations. In: Advances in Neural Information Processing Systems, pp. 1736–1744 (2014)

    Google Scholar 

  26. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 406–420. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_30

    Chapter  Google Scholar 

  27. Kinauer, S., Berman, M., Kokkinos, I.: Monocular surface reconstruction using 3D deformable part models. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 296–308. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_24

    Google Scholar 

  28. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  29. Martins, A.F., Smith, N.A., Aguiar, P.M., Figueiredo, M.A.: Dual decomposition with many overlapping components. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 238–249. Association for Computational Linguistics (2011)

    Google Scholar 

  30. Boussaid, H., Kokkinos, I.: Fast and exact: ADMM-based discriminative shape segmentation with loopy part models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4058–4065 (2014)

    Google Scholar 

  31. Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: message-passing revisited. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  32. Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs. Mach. Learn. 77(1), 27–59 (2009)

    Article  MATH  Google Scholar 

  33. Pepik, B., Stark, M., Gehler, P.V., Schiele, B.: Multi-view and 3D deformable part models. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2232–2245 (2015)

    Article  Google Scholar 

  34. Zhang, Y., Sohn, K., Villegas, R., Pan, G., Lee, H.: Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction, pp. 249–258 (2015)

    Google Scholar 

  35. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. arXiv preprint arXiv:1704.00159 (2017)

  36. Yasin, H., Iqbal, U., Kruger, B., Weber, A., Gall, J.: A dual-source approach for 3D pose estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4948–4956 (2016)

    Google Scholar 

  37. Rogez, G., Schmid, C.: MoCap-guided data augmentation for 3D pose estimation in the wild. In: Advances in Neural Information Processing Systems, pp. 3108–3116 (2016)

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Horizon 2020 programme under grant agreement no. 643666 (I-Support).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Kinauer or Riza Alp Güler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kinauer, S., Güler, R.A., Chandra, S., Kokkinos, I. (2018). Structured Output Prediction and Learning for Deep Monocular 3D Human Pose Estimation. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics