Skip to main content

Autonomous Multi-camera Tracking Using Distributed Quadratic Optimization

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

Multi-camera object tracking is an efficient approach commonly used in security and surveillance systems. In a conventional multi-camera setup, a central computational unit processes large amounts of data in real time that is provided by distributed cameras. High network traffic, cost of storage on the central unit, scalability of the system, and vulnerability of the central unit to attacks are among the disadvantages of such systems. In this paper, we present an autonomous multi-camera tracking system to overcome these challenges. We assume cameras that are capable of limited computation for locally tracking a subset of objects in the scene, as well as peer-to-peer network connectivity among the cameras with a decent bandwidth that is sufficient for message passing to achieve coordination. We propose an efficient distributed algorithm for coordination and load-balancing among the cameras. We also provide experimental results to validate the utility of the proposed algorithm in comparison to a centralized algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Ramanathan, V., Fei-Fei, L.: Tracking millions of humans in crowded spaces. In: Group and Crowd Behavior for Computer Vision, pp. 115–135 (2017)

    Google Scholar 

  2. Almohamad, H.A., Duffuaa, S.O.: A linear programming approach for the weighted graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 522–525 (1993)

    Article  Google Scholar 

  3. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 684–697. ACM, June 2016

    Google Scholar 

  4. Baqué, P., Fleuret, F., Fua, P.: Deep occlusion reasoning for multi-camera multi-target detection. arXiv preprint arXiv:1704.05775 (2017)

  5. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Article  Google Scholar 

  6. Berretti, S., Del Bimbo, A., Pala, P.: A graph edit distance based on node merging. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 464–472. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27814-6_55

    Chapter  Google Scholar 

  7. Bo Bo, N., et al.: Robust multi-camera people tracking using maximum likelihood estimation. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 584–595. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02895-8_53

    Chapter  Google Scholar 

  8. Bunke, H.: Error correcting graph matching: on the influence of the underlying cost function. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 917–922 (1999)

    Article  Google Scholar 

  9. Chavdarova, T., Fleuret, F.: Deep multi-camera people detection. arXiv preprint arXiv:1702.04593 (2017)

  10. Chekuri, C., Khanna, S., Naor, J., Zosin, L.: A linear programming formulation and approximation algorithms for the metric labeling problem. SIAM J. Discrete Math. 18(3), 608–625 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)

    Google Scholar 

  12. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiway cuts (extended abstract). In: Proceedings of the \(24^{th}\) Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 241–251. ACM, New York (1992)

    Google Scholar 

  13. Eshel, R., Moses, Y.: Tracking in a dense crowd using multiple cameras. Int. J. Comput. Vis. 88(1), 129–143 (2010)

    Article  Google Scholar 

  14. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 144–191. PWS Publishing Co., Boston (1997)

    Google Scholar 

  15. Hameete, P., Leysen, S., Van Der Laan, T., Lefter, I., Rothkrantz, L.: Intelligent multi-camera video surveillance. Int. J. Inf. Technol. Secur. 4(4), 51–62 (2012)

    Google Scholar 

  16. Karzanov, A.V.: Minimum 0-extensions of graph metrics. Eur. J. Comb. 19(1), 71–101 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khan, S.M., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 133–146. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_11

    Chapter  Google Scholar 

  18. Khan, S.M., Yan, P., Shah, M.: A homographic framework for the fusion of multi-view silhouettes. In: IEEE 11th International Conference on Computer Vision 2007, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  19. Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM 49(5), 616–639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Livi, L., Rizzi, A.: The graph matching problem. Pattern Anal. Appl. 16(3), 253–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osmanlıoğlu, Y., Ontañón, S., Hershberg, U., Shokoufandeh, A.: Efficient approximation of labeling problems with applications to immune repertoire analysis. In 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2410–2415. IEEE (2016)

    Google Scholar 

  22. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper. Res. 176(2), 774–793 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stillman, S., Tanawongsuwan, R., Essa, I.: Tracking multiple people with multiple cameras. In: International Conference on Audio-and Video-based Biometric Person Authentication (1999)

    Google Scholar 

  24. Williams, M.L., Wilson, R.C., Hancock, E.R.: Deterministic search for relational graph matching. Pattern Recogn. 32(7), 1255–1271 (1999)

    Article  Google Scholar 

  25. Wu, Z., Hristov, N.I., Hedrick, T.L., Kunz, T.H., Betke, M.: Tracking a large number of objects from multiple views. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1546–1553. IEEE (2009)

    Google Scholar 

  26. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: IEEE Conference on Computer Vision and Pattern Recognition 2008, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Osmanlıoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osmanlıoğlu, Y., Shakibajahromi, B., Shokoufandeh, A. (2018). Autonomous Multi-camera Tracking Using Distributed Quadratic Optimization. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics