Skip to main content

Emerging Technologies for Next-Generation Wind Turbines

  • Chapter
  • First Online:
Advanced Wind Turbine Technology
  • 2628 Accesses

Abstract

To increase the performance and reliability of next-generation wind turbines, the technology must continue to evolve building on earlier successes in wind energy and other fields. This chapter provides an introduction and in-depth survey of four emerging technologies: permanent magnetic direct drive, 3D printing, anti-icing and deicing, and data-mining techniques, particularly used for wind energy. The merits of each technology are briefly described as follows. The wind turbines with permanent magnetic direct-drive generators could offer higher efficiency of energy conversion and lower maintenance cost than traditional wind turbine designs with gearboxes. The 3D printing technology opens a new window for rapid design and manufacturing of wind turbine systems, e.g., use of 3D printing of wind turbine blade molds for new blade design. The anti-icing and deicing technology could improve the performance and reliability of wind turbines and lower the safety risks for wind turbines installed in cold-climate areas. Various data-mining techniques take full advantage of the huge amounts of available data from wind turbines and/or wind farms, acquire useful information within, and eventually lower the wind energy cost. The fundamental concepts, main classifications, and key applications and contributions of these four types of emerging technologies are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An X, Jiang D, Liu C, Zhao M (2011) Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst Appl 38(9):11280–11285

    Article  Google Scholar 

  • Anagnostopoulos JS, Koukouvinis PK, Stamatelos FG (2012) Papantonis DE optimal design and experimental validation of a Turgo model hydro turbine. In: ASME 2012 11th biennial conference on engineering systems design and analysis, ASME paper no. ESDA2012–82565, Nantes, France, 2–4 July 2012

    Google Scholar 

  • Antoni J, Randall R (2006) The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech Syst Signal Process 20(2):308–331

    Article  Google Scholar 

  • Bang D-j, Polinder H, Shrestha G, Abraham Ferreira J (2008a) Promising direct-drive generator system for large wind turbines. EPE J 18(3):7–13

    Article  Google Scholar 

  • Bang D, Polinder H, Shrestha G, Ferreira JA (2008b) Review of generator systems for direct-drive wind turbines. In: European wind energy conference & exhibition, Belgium

    Google Scholar 

  • Barbounis TG, Theocharis JB, Alexiadis MC, Dokopoulos PS (2006) Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans Energy Convers 21(1):273–284

    Article  Google Scholar 

  • Bassett K, Carriveau R, Ting D-K (2015) 3D printed wind turbines part 1: design considerations and rapid manufacture potential. Sustainable Energy Technol Assess 11:186–193

    Article  Google Scholar 

  • Bathurst G, Strbac G (2003) Value of combining energy storage and wind in short-term energy and balancing markets. Electr Power Syst Res 67(1):1–8

    Article  Google Scholar 

  • Blonbou R (2011) Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renew Energy 36(3):1118–1124

    Article  Google Scholar 

  • Blonbou R, Monjoly S, Dorville J-F (2011) An adaptive short-term prediction scheme for wind energy storage management. Energy Convers Manag 52(6):2412–2416

    Article  Google Scholar 

  • Boluk Y (1996) Adhesion of freezing precipitates to aircraft surfaces, Optima Speciality Chemicals & Technology Inc., Montreal, Quebec

    Google Scholar 

  • Botta G, Cavaliere M, Holttinen H (1998) Ice accretion at acqua spruzza and its effects on wind turbine operation and loss of energy production. BOREAS IV FMI, Hetta, pp 77–86

    Google Scholar 

  • Carpinone A, Langella R, Testa A, Giorgio M (2010) Very short-term probabilistic wind power forecasting based on Markov chain models. In: 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Singapore. IEEE, pp 107–112, 14–17 June 2010

    Google Scholar 

  • Caselitz P, Giebhardt J, Mevenkamp M, Reichardt M (1997) Application of condition monitoring systems in wind energy converters. In: EWEC-conference. Bookshop for Scientific Publications, Dublin, Ireland, pp 579–582, October, 1997

    Google Scholar 

  • Catalão JPdS, Pousinho HMI, Mendes VMF (2009) An artificial neural network approach for short-term wind power forecasting in Portugal. In: Intelligent system applications to power systems, 2009. ISAP’09. 15th international conference on, 2009. IEEE, pp 1–5

    Google Scholar 

  • Catalão JPS, Pousinho HMI, Mendes VMF (2011) Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36(4):1245–1251

    Article  Google Scholar 

  • Cheng M, Hua W, Zhang J, Zhao W (2011) Overview of stator-permanent magnet brushless machines. IEEE Trans Ind Electron 58(11):5087–5101

    Article  Google Scholar 

  • Cheng M, Zhu Y (2014) The state of the art of wind energy conversion systems and technologies: a review. Energy Convers Manag 88:332–347

    Article  Google Scholar 

  • Colak I, Sagiroglu S, Yesilbudak M (2012) Data mining and wind power prediction: a literature review. Renew Energy 46:241–247

    Article  Google Scholar 

  • Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sust Energ Rev 13(2):428–438

    Article  Google Scholar 

  • De Giorgi MG, Ficarella A, Tarantino M (2011) Error analysis of short term wind power prediction models. Appl Energy 88(4):1298–1311

    Article  Google Scholar 

  • Faulstich S, Hahn B, Tavner PJ (2011) Wind turbine downtime and its importance for offshore deployment. Wind Energy 14(3):327–337

    Article  Google Scholar 

  • Fikke SM, Ronsten G, Heimo A, Kunz S, Ostrozlik M, Persson P, Sabata J,Wareing B,Wichura B, Chum J (2006) COST 727: atmospheric icing on structures: measurements and data collection on icing: state of the art. Meteo Schweiz, Zurich, Switzerland

    Google Scholar 

  • Foley AM, Leahy PG, Marvuglia A, McKeogh EJ (2012) Current methods and advances in forecasting of wind power generation. Renew Energy 37(1):1–8

    Article  Google Scholar 

  • Fortin G, Perron J, Ilinca A (2005) Behaviour and modeling of cup anemometers under Icing conditions. IWAIS XI, Montréal, p 6

    Google Scholar 

  • Friedrich K, Lukas M (2017) State-of-the-art and new technologies of direct drive wind turbines. In: Uyar TS (ed) Towards 100% renewable energy techniques, costs and regional case-studies. Springer International Publishing, Cham, pp 33–50

    Google Scholar 

  • Goldwind (2017) 1.5 MW PMDD wind turbine. http://www.goldwindamericas.com/sites/default/files/Goldwind-Brochure-1.5-Web.pdf. Accessed 28 Aug 2017

  • Gong X (2012) Online nonintrusive condition monitoring and fault detection for wind turbines. The University of Nebraska-Lincoln, Lincoln

    Google Scholar 

  • Google Ngram Viewer 2017 (2017) Additive manufacturing. Google. https://books.google.com/ngrams/. Accessed 12 Nov 2017

  • Grady S, Hussaini M, Abdullah MM (2005) Placement of wind turbines using genetic algorithms. Renew Energy 30(2):259–270

    Article  Google Scholar 

  • Hatch C (2004) Improved wind turbine condition monitoring using acceleration enveloping. Orbit 61:58–61

    Google Scholar 

  • Hatch C, Weiss A, Kalb M (2010) Cracked bearing race detection in wind turbine gearboxes. Orbit 30(1):40–47

    Google Scholar 

  • Hong Y-Y, Chang H-L, Chiu C-S (2010) Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 35(9):3870–3876

    Article  Google Scholar 

  • Howey DA, Bansal A, Holmes AS (2011) Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting. Smart Mater Struct 20(8):085021

    Article  Google Scholar 

  • ISO-12494 (2001) Atmospheric icing of structures. ISO Copyright Office, Geneva

    Google Scholar 

  • Johnson PL, Negnevitsky M, Muttaqi KM (2007) Short term wind power forecasting using adaptive neuro-fuzzy inference systems. In: Power engineering conference, 2007. AUPEC 2007. Australasian Universities. Perth, Australia. IEEE pp 1–6, 9–12 Dec 2007

    Google Scholar 

  • Jursa R, Rohrig K (2008) Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 24(4):694–709

    Article  Google Scholar 

  • Katsigiannis Y, Tsikalakis A, Georgilakis P, Hatziargyriou N (2006) Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model. Advances in Artificial Intelligence, Proceedings of 4th Helenic Conference on AI, SETN 2006, Heraklion, Crete, Greece, pp. 105–115, 18–21 May 2006

    Chapter  Google Scholar 

  • Kusiak A, Li W (2011) The prediction and diagnosis of wind turbine faults. Renew Energy 36(1):16–23

    Article  Google Scholar 

  • Kusiak A, Zhang Z (2010) Short-horizon prediction of wind power: a data-driven approach. IEEE Trans Energy Convers 25(4):1112–1122

    Article  Google Scholar 

  • Kusiak A, Zheng H, Song Z (2009a) Models for monitoring wind farm power. Renew Energy 34(3):583–590

    Article  Google Scholar 

  • Kusiak A, Zheng H, Song Z (2009b) Short-term prediction of wind farm power: a data mining approach. IEEE Trans Energy Convers 24(1):125–136

    Article  Google Scholar 

  • Kusiak A, Zheng H, Song Z (2009c) Wind farm power prediction: a data-mining approach. Wind Energy 12(3):275–293

    Article  Google Scholar 

  • Laakso T, Holttinen H, Ronsten G, Tallhaug L, Horbaty R, Baring-Gould I, Lacroix A, Peltola E, Tammelin B (2003) State-of-the-art of wind energy in cold climates. IEA Annex XIX 24:53

    Google Scholar 

  • Laakso T, Talhaug L, Ronsten G, Horbaty R, Baring-Gould I, Lacroix A, Peltola E (2005) Wind energy projects in cold climates. Int Energy Agency 36:21–24

    Google Scholar 

  • Li S, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Sol Energy Eng 123(4):327–332

    Article  Google Scholar 

  • Liao TW, Triantaphyllou E (2008) Recent advances in data mining of enterprise data: algorithms and applications, vol 6. World Scientific, Singapore

    Google Scholar 

  • Liu H, Tian H-Q, Chen C, Li Y-f (2010) A hybrid statistical method to predict wind speed and wind power. Renew Energy 35(8):1857–1861

    Article  Google Scholar 

  • Mueller M, Zavvos A (2013) Electrical generators for direct drive systems: a technology over. In: Mueller M, Polinder H (eds) Electrical drives for direct drive renewable energy systems. Woodhead Publishing, Oxford

    Chapter  Google Scholar 

  • Muñoz CQG, Márquez FPG, Tomás JMS (2016) Ice detection using thermal infrared radiometry on wind turbine blades. Measurement 93:157–163

    Article  Google Scholar 

  • Negnevitsky M, Johnson P (2008) Very short term wind power prediction: a data mining approach. In: Power and energy society general meeting-conversion and delivery of electrical energy in the 21st century, 2008 IEEE, 2008. IEEE, pp 1–3

    Google Scholar 

  • Negnevitsky M, Mandal P, Srivastava AK (2009) Machine learning applications for load, price and wind power prediction in power systems. In: 2009 15th International Conference on Intelligent System Applications to Power Systems (ISAP), Curitiba, Brazil. IEEE pp 1–6, 8–12 Nov 2009

    Google Scholar 

  • Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg Sci Technol 65(1):88–96

    Article  Google Scholar 

  • Park J, Law KH (2016) A data-driven, cooperative wind farm control to maximize the total power production. Appl Energy 165:151–165

    Article  Google Scholar 

  • Pinson P, Madsen H (2008) Probabilistic forecasting of wind power at the minute time-scale with markov-switching autoregressive models. In: Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems, 2008, Rincon, PR, USA . IEEE, pp 1–8, 25–29 May 2008

    Google Scholar 

  • Popa LM, Jensen B-B, Ritchie E, Boldea I (2003) Condition monitoring of wind generators. In: 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003, Salt Lake City, UT, USA. IEEE pp 1839–1846, 12–16 October 2003

    Google Scholar 

  • Richert F (1996) Is rotorcraft icing knowledge transferable to wind turbines. BOREAS III FMI, Saariselkä, pp 366–380

    Google Scholar 

  • Semken RS, Polikarpova M, Röyttä P, Alexandrova J, Pyrhönen J, Nerg J, Mikkola A, Backman J (2012) Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors. IET Renewable Power Generation 6(1):1–8

    Article  Google Scholar 

  • Senjyu T, Yona A, Urasaki N, Funabashi T (2006) Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator. In: Power systems conference and exposition, 2006. PSCE’06. 2006 IEEE PES, 2006, Atlanta, GA, USA. IEEE pp 1260–1265, 29 Oct–1 Nov 2006

    Google Scholar 

  • Shi J, Yang Y, Wang P, Liu Y, Han S (2010) Genetic algorithm-piecewise support vector machine model for short term wind power prediction. In: Intelligent control and automation (WCICA), 2010 8th world congress on, 2010. IEEE, pp 2254–2258

    Google Scholar 

  • Shun S, Ahmed NA (2012) Rapid prototyping of aerodynamics research models. In: Applied mechanics and materials. Trans Tech Publications, Switzerland, pp 2016–2025

    Article  Google Scholar 

  • Swainson WK (1977) Method, medium and apparatus for producing three-dimensional figure product. Google Patents

    Google Scholar 

  • Tammelin B, Holttinen H, Morgan C, Richert F, Seifert H, Säntti K, Vølund P (2000) Wind energy production in cold climate. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Tammelin B, Säntti K, Dobech H, Durstewich M, Ganander H, Kury G, Laakso T, Peltola E, Ronsten R (2005) Wind turbines in icing environment: improvement of tools for siting, certification and operation-NEW ICETOOLS. Finnish Meteorological Institute, Finland

    Google Scholar 

  • Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Boston

    Google Scholar 

  • Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G (2014) Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7(4):2595–2630

    Article  Google Scholar 

  • U.S. Department of Energy (2016) Transforming wind turbine blade mold manufacturing with 3D printing. https://www.youtube.com/watch?time_continue=241&v=tRiULaXzRNo. Accessed 24 Nov 2017

  • Ultimaker (2017) Vertical axis wind turbine model. https://ultimaker.com/en/resources/19639-vertical-axis-wind-turbine. Accessed 12 Nov 2017

  • Vargas L, Paredes G, Bustos G (2010) Data mining techniques for very short term prediction of wind power. In: Bulk power system dynamics and control (iREP)-VIII (iREP), 2010 iREP symposium, 2010. IEEE, pp 1–7

    Google Scholar 

  • Wang L, Dong L, Hao Y, Liao X (2009) Wind power prediction using wavelet transform and chaotic characteristics. In: World non-grid-connected wind power and energy conference, 2009. WNWEC 2009, Nanjing, China, IEEE, pp 1–5, 24–26 Sept 2009

    Google Scholar 

  • Wilkinson MR, Spinato F, Tavner PJ (2007) Condition monitoring of generators & other subassem- blies in wind turbine drive trains. In: 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cracow, Poland. IEEE pp 388–392, 6–8 Sept 2007

    Google Scholar 

  • Wu Y-K, Lee C-Y, Tsai S-H, Yu S-N (2010) Actual experience on the short-term wind power fore- casting at Penghu—from an island perspective. In: 2010 International Conference on Power System Technology, Hangzhou, China. IEEE, pp 1–8, 24–28 Oct 2010

    Google Scholar 

  • Xia J, Zhao P, Dai Y (2010) Neuro-fuzzy networks for short-term wind power forecasting. In: 2010 International Conference on Power System Technology, Hangzhou, China. IEEE pp 1–5, 24–28 Oct 2010

    Google Scholar 

  • Xin W, Liu Y, Li X (2010) Short-term forecasting of wind turbine power generation based on genetic neural network. In: Intelligent control and automation (WCICA), 2010 8th world congress on, 2010. IEEE, pp 5943–5946

    Google Scholar 

  • Yang W, Tavner PJ, Crabtree CJ, Feng Y, Qiu Y (2014) Wind turbine condition monitoring: technical and commercial challenges. Wind Energy 17(5):673–693

    Article  Google Scholar 

  • Yazidi A, Henao H, Capolino G, Artioli M, Filippetti F, Casadei D (2005) Flux signature analysis: an alternative method for the fault diagnosis of induction machines. In: Power tech, 2005 IEEE Russia. IEEE, pp 1–6

    Google Scholar 

  • Zayas J, Johnson M (2016) Transforming wind turbine blade mold manufacturing with 3D printing. U.S. DOE's Office of Energy Efficiency and Renewable Energy (EERE), USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, W. (2018). Emerging Technologies for Next-Generation Wind Turbines. In: Hu, W. (eds) Advanced Wind Turbine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78166-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78166-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78165-5

  • Online ISBN: 978-3-319-78166-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics